
PKP Harvester2
Version 2.0

Technical Reference



This work is licensed under the Creative Commons Attribution­NonCommercial­NoDerivs License. 
To view a copy of this license, visit http://creativecommons.org/licenses/by­nc­nd/2.0/ca/ 
or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

http://creativecommons.org/licenses/by-nc-nd/2.0/ca/


Table of Contents
Introduction...............................................................................................................3

About the Public Knowledge Project.....................................................................3
About PKP Harvester2...........................................................................................3
About This Document............................................................................................4

Document Conventions.....................................................................................4
Technologies..............................................................................................................5
Design Overview........................................................................................................6

Introduction..........................................................................................................7
Coding Conventions..............................................................................................9

General.............................................................................................................9
User Interface....................................................................................................9
PHP Code..........................................................................................................9
Database.........................................................................................................10
Security...........................................................................................................10

File Structure.......................................................................................................11
Request Handling................................................................................................12

A Note on URLs...............................................................................................12
Request Handling Example.............................................................................13
Locating Request Handling Code....................................................................14

Database Design......................................................................................................15
Overview.............................................................................................................15
Miscellaneous Tables...........................................................................................16

Class Reference........................................................................................................17
Class Hierarchy....................................................................................................17
Page Classes........................................................................................................20

Introduction....................................................................................................20
Model Classes......................................................................................................20
Data Access Objects (DAOs)................................................................................21
Support Classes...................................................................................................22

Sending Email Messages.................................................................................22
Internationalization........................................................................................22
Forms..............................................................................................................23
Configuration..................................................................................................24
Core Classes....................................................................................................24
Database Support............................................................................................25
Security...........................................................................................................26
Session Management......................................................................................26

Page 1



Template Support............................................................................................26
Paging Classes.................................................................................................26
Plugins............................................................................................................27

Common Tasks....................................................................................................28
Sending Emails...............................................................................................28
Database Interaction with DAOs.....................................................................28

User Interface..........................................................................................................30
Variables..........................................................................................................30
Functions & Modifiers.....................................................................................31

Plugins.....................................................................................................................33
Objects & Classes.................................................................................................34
Registration Function..........................................................................................34
Hook Registration and Callback..........................................................................35
Plugin Management............................................................................................36
Additional Plugin Functionality...........................................................................37
Hook List.............................................................................................................38

Translating Harvester2.............................................................................................47
Obtaining More Information....................................................................................48

Page 2



Introduction

About the Public Knowledge Project

The Public Knowledge Project (http://pkp.sfu.ca) is dedicated to exploring 
whether and how new technologies can be used to improve the professional and 
public value of scholarly research. Bringing together scholars, in a number of fields, 
as well as research librarians, it is investigating the social, economic, and technical 
issues entailed in the use of online infrastructure and knowledge management 
strategies to improve both the scholarly quality and public accessibility and 
coherence of this body of knowledge in a sustainable and globally accessible form. 
The project seeks to integrate emerging standards for digital library access and 
document preservation, such as Open Archives and InterPARES, as well as for such 
areas as topical maps and doctoral dissertations.

About PKP Harvester2

The PKP Harvester2 is an open­source metadata harvester and aggregator that has 
been developed by the Public Knowledge Project through its federally funded efforts 
to expand and improve access to research. Harvester2 has been designed with 
flexibility in mind and supports multiple harvesting protocols and metadata formats 
with an emphasis on performance and simplicity of use. In concert with the PKP 
software suite, including Open Journal Systems and Open Conference Systems, the 
goal of Harvester2 is to promote open access publishing and contribute to the 
public good on a global scale.

Version 2.x represents a complete rebuild and rewrite of the PKP Harvester 1.x, 
based on the platform pioneered by the Public Knowledge Project with Open 
Journal Systems 2.x.

User documentation for Harvester2 can be found on the Internet at 
http://pkp.sfu.ca/harvester2/demo/index.php/index/help; a 
demonstration site is available at http://pkp.sfu.ca/harvester2/demo.

Page 3

http://pkp.sfu.ca/demo/present
http://pkp.sfu.ca/ojs/demo/present/index.php/index/help
http://pkp.sfu.ca/


About This Document

Document Conventions

● Code samples, filenames, URLs, and class names are presented in a courier 
typeface;

● Square braces are used in code samples, filenames, URLs, and class names to 
indicate a sample value: for example, [anything]Handler.inc.php can be 
interpreted as any file name ending in Handler.inc.php

● The URL http://www.mylibrary.com used in many examples is intended as 
a fictional illustration only.

Page 4

http://www.mylibrary.com/


Technologies

PKP Harvester2 is written in object­oriented PHP (http://www.php.net) using 
the Smarty template system for user interface abstraction 
(http://smarty.php.net). Data is stored in a SQL database, with database calls 
abstracted via the ADODB Database Abstraction library 
(http://adodb.sourceforge.net).

Recommended server configurations:

● PHP support (4.2.x or later)
● MySQL (3.23.23 or later)
● Apache (1.3.2x or later) or Apache 2 (2.0.4x or later)

or Microsoft IIS 6 (PHP 5.x required)
● Linux, BSD, Solaris, Mac OS X, Windows operating systems

Other versions or platforms may work but are not supported and may not have 
been tested. We welcome feedback from users who have successfully run 
Harvester2 on platforms not listed above.

Page 5

http://adodb.sourceforge.net/
http://smarty.php.net/
http://www.php.net/


Design Overview

Harvester2 is designed to be a flexible tool for fetching, storing, indexing and 
searching data from a variety of different types of sources. Several parts of this 
process are abstracted using plugins to allow future extensions; for example, 
metadata schema are each implemented as a plugin and more can be added by 
simply dropping new plugins into the appropriate directory. Likewise, metadata 
harvesting protocols, such as the Open Archives Initiative metadata harvesting 
protocol, are also implemented as plugins.

The Harvester is designed around the concepts of Archives, Records, Entries, and 
Schemas, and Fields.

Each Record describes a single “entity” of some kind, such as a book, recording, or 
web page.

Each Archive is a repository of records. An archive may contain a set of records 
corresponding to a physical collection, such as a library.

A Schema is a standard for describing an entity, such as Dublin Core, MARC, or 
MODS. Each Schema is composed of a set of Fields, such as “Creator” and “Title”, 
that can be combined to comprehensively describe a record.

In Harvester2, each Record contains a number of Entries, each in a respective Field, 
that describe the entity that the Record corresponds to.

Harvester2 is designed to be a remote database of metadata, using the above 
concepts, that periodically communicates with the source from which the data is 
obtained. For example, if an organization is managing a journal using Open Journal 
Systems, a remote site can index and provide searching facilities to the journal 
(and, simultaneously, many other data sources) using Harvester2. Data is 
exchanged, for example, using the OAI metadata harvesting protocol; periodically 
Harvester2 will refresh the data from the journal source.

Page 6



Introduction

The design of PKP Harvester2 is heavily structured for maintainability, flexibility 
and robustness. For this reason it may seem complex when first approached. Those 
familiar with Sun's Enterprise Java Beans technology or the Model­View­Controller 
(MVC) pattern will note many similarities.

As in a MVC structure, data storage and representation, user interface presentation, 
and control are separated into different layers. The major categories, roughly 
ordered from “front­end” to “back­end,” follow:

● Smarty templates, which are responsible for assembling HTML pages to 
display to users;

● Page classes, which receive requests from users' web browsers, delegate any 
required processing to various other classes, and call up the appropriate 
Smarty template to generate a response;

● Model classes, which implement PHP objects representing the system's 
various entities, such as Archives and Records;

● Data Access Objects (DAOs), which generally provide (amongst others) 
update, create, and delete functions for their associated Model classes, are 
responsible for all database interaction;

● Support classes, which provide core functionalities, miscellaneous common 
classes and functions, etc.

As the system makes use of inheritance and has consistent class naming 
conventions, it is generally easy to tell what category a particular class falls into. 
For example, a Data Access Object class always inherits from the DAO class, has a 
class name of the form [Something]DAO, and has a filename of the form 
[Something]DAO.inc.php.

Page 7



The following diagram illustrates the various components and their interactions.

Page 8

Remote Browser

index.php 
wrappers

SQL

DAOs

TemplatesPage Classes

Forms

Requests

Requests

Responds

Invokes

Invokes Invokes

either/or

Plugins

Uses

Model Classes

Support Classes

E
xt

er
na

l S
er

vi
ce

s

Model View & Controller



Coding Conventions

General

● Directories are named using the lowerCamelCase capitalization convention;

● Because Harvester2 supports multiple languages, no assumptions should be 
made about word orderings. Any language­specific strings should be defined 
in the appropriate locale files, making use of variable replacement as 
necessary.

User Interface

● Layout should be separated from content using Cascading Style Sheets (CSS);
● Smarty templates should be valid XHTML 1.0 Transitional (see 

http://validator.w3.org/).

PHP Code

● Wherever possible, global variables and functions outside of classes should be 
avoided;

● Symbolic constants, mapped to integers using the PHP define function, are 
preferred to numeric or string constants;

● Filenames should match class names; for example, the AdminHandler class is 
in the file AdminHandler.inc.php;

● Class names and variables should be capitalized as follows: Class names use 
CamelCase, and instances use lowerCamelCase. For example, instances of a 
class MyClass could be called $myClass;

● Whenever possible and logical, the variable name should match the class 
name: For example, $myClass is preferred to an arbitrary name like $x;

● Class names and source code filenames should be descriptive and unique;

● Output should be restricted as much as possible to Smarty templates. A valid 
situation in which PHP code should output a response is when HTTP headers 
are necessary;

● To increase performance and decrease server load, import(...) calls should 
be kept as localized as possible;

● References should be used with care, particularly as they do not behave 

Page 9

http://validator.w3.org/


consistently across different releases of PHP. For increased performance, 
constructors should be generally called by reference, and references should be 
used whenever possible when passing objects.

Database

● SQL tables are named in the plural (e.g. archives, records) and table 
names are lower case;

● SQL database feature requirements should be kept minimal to promote broad 
compatibility. For example, since databases handle date arithmetic 
incompatibly, it is performed in the PHP code rather than at the database 
level.

● All SQL schema information should be maintained in 
dbscripts/xml/harvester2_schema.xml (except plugin schema, 
described later).

Security

● The validity of user requests is checked both at the User Interface level and in 
the associated Page class. For example, if a user is not allowed to click on a 
particular button, it will be disabled in HTML by the Smarty template. If the 
user attempts to circumvent this and submits the button click anyway, the 
Page class receiving the form or request will ensure that it is ignored.

● Wherever possible, use the Smarty template engine's string escape features to 
ensure that HTML exploits and bugs are avoided and special characters are 
displayed properly. Only the Site Administrator should be able to input 
unchecked HTML, and only in certain fields (such as the multiline fields in 
Administration). For example, when displaying an archive title, always use the 
following: {$archive­>getTitle()|escape}

● Limited HTML support can be provided using the Smarty 
strip_unsafe_html modifier, e.g. {$myVariable|
strip_unsafe_html}

Page 10



File Structure

The following files are in the root directory of a typical Harvester2 installation: 

File/Directory Description
cache Directory containing cached information
classes Directory containing most of Harvester2's PHP code: Model 

classes, Data Access Objects (DAOs), core classes, etc
config.TEMPLATE.inc.php Sample configuration file
config.inc.php System­wide configuration file
dbscripts Directory containing XML database schemas and data such 

as email templates
docs Directory containing system documentation
help Directory containing system help XML documents
includes Directory containing system bootstrapping PHP code: class 

loading, miscellaneous global functions
index.php All requests are processed through this PHP script, whose 

task it is to invoke the appropriate code elsewhere in the 
system

js Directory containing client­side javascript files
lib Directory containing ADODB (database abstraction) and 

Smarty (template system) classes
locale Directory containing locale data and caches
pages Directory containing Page classes
plugins Directory containing additional plugins
public Directory containing files to be made available to remote 

browsers
registry Directory containing various XML data required by the 

system: scheduled tasks, available locale names, default 
crosswalks, words to avoid when indexing content.

rt Directory containing XML data used by the Reading Tools

Page 11



File/Directory Description
styles Directory containing CSS stylesheets used by the system
templates Directory containing all Smarty templates
tools Directory containing tools to help maintain the system: 

unused locale key finder, scheduled task wrapper, SQL 
generator, etc.

Request Handling

The way the system handles a request from a remote browser is somewhat 
confusing if the code is examined directly, because of the use of stub files whose 
sole purpose is to call on the correct PHP class. For example, although the standard 
index.php file appears in many locations, it almost never performs any actual 
work on its own.

Instead, work is delegated to the appropriate Page classes, each of which is a 
subclass of the Handler class and resides in the pages directory of the source tree.

A Note on URLs

Generally, URLs into Harvester2 make use of the PATH_INFO variable.  For example, 
examine the following (fictional) URL:

http://www.mylibrary.com/harvester2/index.php/browse/index/all

The PHP script invoked to handle this request, index.php, appears halfway 
through the URL. The portion of the URL appearing after this is passed to 
index.php via a CGI variable called PATH_INFO.

Some server configurations do not properly handle requests like this, which most 
often results in a 404 error when processing this sort of URL. If the server cannot be 
re­configured to properly handle these requests, Harvester2 can be configured to 
use an alternate method of generating URLs. See the disable_path_info option 
in config.inc.php. When this method is used, Harvester2 will generate URLs 
unlike those used as examples in this document. For example, the URL above would 

Page 12

http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile


appear as:
http://www.mylibrary.com/harvester2/index.php?

page=browse&op=index&path=all

Request Handling Example

Predictably, delegation of request handling occurs based on the request URL. A 
typical URL for browsing an archive is:

http://www.mylibrary.com/harvester2/index.php/browse/index/all

The following paragraphs describe in a basic fashion how the system handles a 
request for the above URL. It may be useful to follow the source code at each step 
for a more comprehensive understanding of the process.

In this example, http://www.mylibrary.com/harvester2/index.php is the 
path to and filename of the root index.php file in the source tree. All requests pass 
through this PHP script, whose task is to ensure that the system is properly 
configured and to pass control to the appropriate place.

After index.php, there are several more components to the URL. The function of 
the first (in this case, browse) is predefined; if others follow, they serve as 
parameters to the appropriate handler function.

The first field in this example URL identifies the particular Page class that will be 
used to process this request. In this example, the system would handle a request for 
the above URL by attempting to load the file pages/browse/index.php; a brief 
glance at that file indicates that it simply defines a constant identifying the Page 
class name (in this case, BrowseHandler) and loads the PHP file defining that 
class.

The last fields, index and all in this case, now come into play. The first identifies 
the particular function of the Page class that will be called to handle the request. In 
the above example, this is the index method of the BrowseHandler class (defined 
in the pages/browse/BrowseHandler.inc.php file).

Locating Request Handling Code

Page 13

http://www.mylibrary.com/ojs2/index.php
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php?journal=myjournal&


Once the framework responsible for dispatching requests is understood, it is fairly 
easy to locate the code responsible for performing a certain task in order to modify 
or extend it. The code that delegates control to the appropriate classes has been 
written with extensibility in mind; that is, it should rarely need modification.

In order to find the code that handles a specific request, follow these steps:

● Find the name of the Page class in the request URL. This is the first field after 
index.php; for example, in the following URL:

http://www.mylibrary.com/index.php/browse/index/all

the name of the Page class is BrowseHandler. (Page classes always end with 
Handler. Also note the differences in capitalization; in the URL, 
lowerCamelCase is used; class names are always CamelCase.)

● Find the source code for this Page class in the pages directory of the source 
tree. In the above example, the source code is in 
pages/browse/BrowseHandler.inc.php.

● Determine which function is being called by examining the URL. This is the 
second field after index.php, or, in this case, index.

● Therefore, the handling code for this request is in the file 
pages/user/UserHandler.inc.php, in the function profile.

● Any remaining parts of the URL, in this case “all”, are passed to this function 
as parameters.

Page 14

http://www.mylibrary.com/index.php/myjournal/user/profile


Database Design

Overview

The major tables involved in storing metadata are represented in the diagram 
below; arrows indicate many­to­one foreign keys.

Unless otherwise noted, database tables are managed by PHP classes of the same 
name (except in the singular form). For example, the archives table is managed by 
the ArchiveDAO class; rows are represented using the Archive class.

The archives table maintains the list of archives known to the system, whether 
created by the administrator or submitted by users. In addition to a title, 
description, etc., this table associates each archive with a harvester plugin (such as 
the OAI harvester plugin).

Metadata is stored in Harvester2 in the entries table, regardless of the metadata 
format being used. Each row in the entries table represents a single metadata 
“item” – for example, a title or a date. This is the finest level of granularity of the 
particular metadata format being represented.

Each entry is associated with a particular row in the raw_fields table, and with a 
particular row in the archives table. Additionally, each entry can be further 
described or qualified via entries in the entry_attributes table.

Page 15

entries

entry_attributes

archives

raw_fields

records schema_plugins



Rows in the entries and entry_attributes tables are managed by the 
RecordDAO class.

entries are grouped into records, which are represented by the records table. 
Each record represents a single entity which is described by its various entries. 
Here, each record is also associated with the schema plugin that is responsible for 
its display.

The raw_fields table maintains a list of all fields supported by the various 
schemas known to Harvester2, and associates each with the schema plugin it relates 
to (as identified in the schema_plugins table).

Note that the entries in the schema_plugins and raw_fields tables are 
constructed on demand, largely to provide an efficient identifier for relational 
mappings, and should be considered to exist only at the whim of the schema plugin 
code.

Miscellaneous Tables

The archive_settings, plugin_settings, and site_settings tables are used 
to store a variety of additional pieces of information at the archive, plugin, and site 
contexts. The specific usage of these tables is mostly dependent on the set of 
plugins being used.

The email_templates and email_templates_data tables store the localized 
body text and other information about system email templates.

The search_keyword_list, search_object_keywords, and search_objects 
tables provide a full­text index for harvested records.

The versions and sessions tables, respectively, store Harvester2 version 
information and login session identification information.

Page 16



Class Reference

Class Hierarchy

All classes and subclasses of the major Harvester2 objects are listed below. 
Indentation indicates inheritance.

CacheManager
CommandLineTool

dbXMLtoSQL
genTestLocale
harvest
rebuildSearchIndex
upgradeTool

Config
ConfigParser
Core
DAO

ArchiveDAO
ArchiveSettingsDAO
CrosswalkDAO
EmailTemplateDAO
FieldDAO
PluginSettingsDAO
RecordDAO
SchemaDAO
SearchDAO
SessionDAO
SiteSettingsDAO
VersionDAO

DAORegistry
DBConnection
DBDataXMLParser
DBResultRange
DataObject

Archive
BaseEmailTemplate

EmailTemplate
Crosswalk
Field
HelpToc
HelpTopic
HelpTopicSection
Mail

MailTemplate
Record
Schema

Page 17



Site
Version

FileWrapper
FTPFileWrapper
HTTPFileWrapper

HTTPSFileWrapper
Form

ArchiveForm
CrosswalkForm
InstallForm
SiteSettingsForm
UpgradeForm

FormError
FormValidator

FormValidatorArray
FormValidatorCustom
FormValidatorInSet
FormValidatorLength
FormValidatorRegExp

FormValidatorAlphaNum
FormValidatorEmail

GenericCache
FileCache
MemcacheCache

Handler
AboutHandler
AddHandler
AdminHandler

AdminArchiveHandler
AdminCrosswalkHandler
AdminFunctionsHandler
AdminLanguagesHandler
AdminSettingsHandler

BrowseHandler
HelpHandler
IndexHandler
InstallHandler
LoginHandler
RecordHandler
SearchHandler

Harvester
OAIHarvester

Help
HookRegistry
Installer

Install
Upgrade

ItemIterator
ArrayItemIterator
DAOResultFactory
DBRowIterator
VirtualArrayIterator

Page 18



Locale
Plugin

HarvesterPlugin
JunkHarvesterPlugin
OAIHarvesterPlugin

PostprocessorPlugin
TestPostprocessorPlugin

PreprocessorPlugin
TestPreprocessorPlugin

SchemaPlugin
DublinCorePlugin
MarcPlugin
ModsPlugin

PluginRegistry
Registry
Request
SMTPMailer
SchemaMap
Search
SearchIndex
SessionManager
String
TemplateManager
Validation
VersionCheck
XMLCustomWriter
XMLDAO

HelpTocDAO
HelpTopicDAO

XMLNode
XMLParser
XMLParserHandler

DublinCoreXMLHandler
MarcXMLHandler
ModsXMLHandler
OAIXMLHandler
SchemaMapHandler
XMLParserDOMHandler

Page 19



Page Classes

Introduction

Pages classes receive requests from users' web browsers, delegate any required 
processing to various other classes, and call up the appropriate Smarty template to 
generate a response (if necessary). All page classes are located in the pages 
directory, and each of them must extend the Handler class (see 
classes/core/Handler.inc.php).

Additionally, page classes are responsible for ensuring that user requests are valid 
and any authentication requirements are met. As much as possible, user­submitted 
form parameters and URL parameters should be handled in Page classes and not 
elsewhere, unless a Form class is being used to handle parameters.

An easy way to become acquainted with the tasks a Page class must fulfill is to 
examine a typical one. The file pages/browse/BrowseHandler.inc.php contains 
the code implementing the class BrowseHandler, which handles requests such as 
http://www.mylibrary.com/harvester2/browse/index. This is a fairly 
typical Page class responsible for allowing the user to choose and browse records in 
an archive.

Each Page class implements a number of functions that can be called by the user by 
addressing the appropriate Page class and function in the request URL. (See the 
section titled “Request Handling” for more information on the mapping between 
URLs and page classes.)

Model Classes

The Model classes are PHP classes responsible only for representing database 
entities in memory. For example, the archives table stores archive information in 
the database; there is a corresponding Model class called Archive (see 
classes/archive/Archive.inc.php) and DAO class called ArchiveDAO (see 
the section called Data Access Objects [DAOs]).

Methods provided by Model classes are largely get/set methods to retrieve and 
store information, such as the getTitle() and setTitle($title) methods of 

Page 20

http://www.mylibrary.com/ojs2/myjournal/about/siteMap


the Archive class. Model classes are not responsible for database storage or 
updates; this is accomplished by the associated DAO class.

All Model classes extend the DataObject class.

Data Access Objects (DAOs)

Data Access Objects are used to retrieve data from the database in the form of 
Model classes, to update the database given a modified Model class, or to delete 
rows from the database.

Each Model class has an associated Data Access Object. For example, the Archive 
class (classes/archive/Archive.inc.php) has an associated DAO called 
ArchiveDAO (classes/archive/ArchiveDAO.inc.php) that is responsible for 
implementing interactions between the Model class and its database entries.

All DAOs extend the DAO class (classes/db/DAO.inc.php). All communication 
between PHP and the database back­end is implemented in DAO classes. As much 
as is logical and efficient, a given DAO should limit its interaction to the table or 
tables with which it is primarily concerned.

DAOs, when used, are never instantiated directly. Instead, they are retrieved by 
name using the DAORegistry class, which maintains instances of the system's 
DAOs. For example, to retrieve an archive DAO:

$archiveDao = &DAORegistry::getDAO('ArchiveDAO');

Then, to use it to retrieve an archive with the ID stored in $archiveId:

$archive = &$archiveDao­>getArchive($archiveId);

Note that many of the DAO methods that fetch a set of results will return subclasses 
of the ItemIterator class rather than the usual PHP array. This facilitates paging 
of lists containing many items, and can be more efficient than preloading all results 
into an array. See the discussion of Paging Classes in the Support Classes section.

Page 21



Support Classes

Sending Email Messages

classes/mail/Mail.inc.php
classes/mail/MailTemplate.inc.php
classes/mail/SMTPMailer.inc.php

These classes, along with the EmailTemplate and MailTemplate model classes 
and EmailTemplateDAO DAO class, provide all email functionality used in the 
system. 

Mail.inc.php provides the basic functionality for composing, addressing, and 
sending an email message (either via PHP's mail() function or via the custom 
SMTPMailer class). It is extended by the class MailTemplate to add support for 
template­based messages.

Internationalization

There is a primary XML document for each language of display, located in the 
locale directory in a subdirectory named after the locale; for example, the en_US 
locale information is located in the locale/en_US/locale.xml file.

This file contains a number of locale strings used by the User Interface (nearly all 
directly from the Smarty templates, although some strings are coded in the Page 
classes, for example).

These are invoked by Smarty templates with the {translate key=”[keyName]”} 
directive (see the section titled User Interface for more information). Variable 
replacement is supported.

The system's locales are configured, installed and managed on the Languages page, 
available from Site Settings. The available locales list is assembled from the registry 
file registry/locales.xml.

In addition to the language­dependent locale.xml file, locale­specific data can be 
found in subdirectories of the dbscripts/xml/data/locale and 
registry/locale directories, once again named after the locale. For example, the 

Page 22



XML file dbscripts/xml/data/locale/en_US/email_templates_data.xml 
contains all email template text for the en_US (United States English) locale.

All XML data uses UTF­8 encoding and as long as the back­end database is 
configured to properly handle special characters, they will be stored and displayed 
as entered.

Internationalization functions are provided by classes/i18n/Locale.inc.php. 
See also classes/template/TemplateManager.inc.php (part of the User 
Interface's support classes) for the implementation of template­based locale 
translation functions.

Forms

The Forms class (classes/form/Form.inc.php) and its various subclasses, such 
as classes/admin/form/ArchiveForm.inc.php, which is used by a Site 
Administrator to modify an Archive, centralize the implementation of common 
tasks related to form processing such as validation and error handling.

Subclasses of the Form class override the constructor, initData, display, 
readInputData, and execute methods to define the specific form being 
implemented. The role of each function is described below:

● Class constructor: Initialize any variables specific to this form. This is useful, 
for example, if a form is related to a specific Archive; an Archive object or 
archive ID can be required as a parameter to the constructor and kept as a 
member variable.

● initData: Before the form is displayed, current or default values (if any) 
must be loaded into the _data array (a member variable) so the form class 
can display them.

● display: Just before a form is displayed, it may be useful to assign additional 
parameters to the form's Smarty template in order to display additional 
information. This method is overridden in order to perform such assignments.

● readInputData: This method is overridden to instruct the parent class which 
form parameters must be used by this form. Additionally, tasks like validation 
can be performed here.

● execute: This method is called when a form's data is to be “committed.” This 

Page 23



method is responsible, for example, for updating an existing database record 
or inserting a new one(via the appropriate Model and DAO classes).

The best way to gain understanding of the various Form classes is to view a typical 
example such as the ArchiveForm class from the example above (implemented in 
classes/admin/form/ArchiveForm.inc.php).

It is not convenient or logical for all form interaction between the browser and the 
system to be performed using the Form class and its subclasses; generally speaking, 
this approach is only useful when a page closely corresponds to a database record. 
For example, the page defined by the ArchiveForm class closely corresponds to the 
layout of the archives database table.

Configuration

Most of Harvester2's settings are stored in the database in the archive_settings, 
site_settings, and plugin_settings tables, and are accessed via the 
appropriate DAOs and Model classes. However, certain system­wide settings are 
stored in a flat file called config.inc.php (which is not actually a PHP script, but 
is so named to ensure that it is not exposed to remote browsers).

This configuration file is parsed by the ConfigParser class 
(classes/config/ConfigParser.inc.php) and stored in an instance of the 
Config class (classes/config/Config.inc.php).

Core Classes

The Core classes (in the classes/core directory) provide fundamentally 
important functions and several of the classes upon which much of the functionality 
of Harvester2 is based. They are simple in and of themselves, with flexibility being 
provided through their extension.

● Core.inc.php: Provides miscellaneous system­wide functions
● DataObject.inc.php: All Model classes extend this class
● Handler.inc.php: All Page classes extend this class
● Registry.inc.php: Provides a system­wide facility for global values, such as 

Page 24



system startup time, to be stored and retrieved
● Request.inc.php: Provides a wrapper around HTTP requests, and provides 

related commonly­used functions
● String.inc.php: Provides locale­independent string­manipulation functions 

and related commonly­used functions

In particular, the Request class (defined in classes/core/Request.inc.php) 
contains a number of functions to obtain information about the remote user and 
build responses. All URLs generated by Harvester2 to link into itself are built using 
the Request::url function; likewise, all redirects into Harvester2 are built using 
the Request::redirect function.

Database Support

The basic database functionality is provided by the ADODB library 
(http://adodb.sourceforge.net); atop the ADODB library is an additional 
layer of abstraction provided by the Data Access Objects (DAOs). These make use of 
a few base classes in the classes/db directory that are extended to provide 
specific functionality.

● DAORegistry.inc.php: This implements a central registry of Data Access 
Objects; when a DAO is desired, it is fetched through the DAO registry.

● DBConnection.inc.php: All database connections are established via this 
class.

● DAO.inc.php: This provides a base class for all DAOs to extend. It provides 
functions for accessing the database via the DBConnection class.

In addition, there are several classes that assist with XML parsing and loading into 
the database:

● XMLDAO.inc.php: Provides operations for retrieving and modifying objects 
from an XML data source

● DBDataXMLParser.inc.php: Parses an XML schema into SQL statements

Security

Harvester2 uses a simple security model. The only authenticated user is the site 

Page 25

http://adodb.sourceforge.net/


administrator, who can choose a username and password. All other users are 
unauthenticated and have the same level of access.

The Validation class (classes/security/Validation.inc.php) is 
responsible for ensuring security in interactions between the client browser and the 
web server. It handles login and logout requests, generates password hashes, and 
provides many useful shortcut functions for security­ and validation­related issues. 
The Validation class is the preferred means of access for these features.

Session Management

Session management is provided by the Session model class, SessionDAO, and 
the SessionManager class (classes/session/SessionManager.inc.php).

While Session and SessionDAO manage database­persistent sessions for 
individual users, SessionManager is concerned with the technical specifics of 
sessions as implemented for PHP and Apache.

Template Support

Smarty templates (http://smarty.php.net) are accessed and managed via the 
TemplateManager class (classes/template/TemplateManager.inc.php), 
which performs numerous common tasks such as registering additional Smarty 
functions such as {translate ...}, which is used for localization, and setting up 
commonly­used template variables such as URLs and date formats.

Paging Classes

Several classes facilitate the paged display of lists of items, such as submissions:
ItemIterator
ArrayItemIterator
DAOResultFactory
DBRowIterator
VirtualArrayIterator

The ItemIterator class is an abstract iterator, for which specific implementations 

Page 26

http://smarty.php.net/


are provided by the other classes. All DAO classes returning subclasses of 
ItemIterator should be treated as though they were returning ItemIterators.

Each iterator represents a single “page” of results. For example, when fetching a list 
of records from RecordDAO, a range of desired row numbers can be supplied; the 
ItemIterator returned (specifically an ArrayIterator) contains information 
about that range.

ArrayItemIterator and VirtualArrayIterator provide support for iterating 
through PHP arrays; in the case of VirtualArrayIterator, only the desired 
page's entries need be supplied, while ArrayItemIterator will take the entire set 
of results as a parameter and iterate through only those entries on the current page.

DAOResultFactory, the most commonly used and preferred ItemIterator 
subclass, takes care of instantiating Model objects corresponding to the results 
using a supplied DAO and instantiation method.

DBRowIterator is an ItemIterator wrapper around the ADODB result structure.

Plugins

There are several classes included with Harvester2 distribution to help support a 
plugin registry. For information on the plugin registry, see the section titled 
“Plugins”.

Page 27



Common Tasks

The following sections contain code samples and further description of how the 
various classes interact.

Sending Emails

Emails templates for each locale are stored in an XML file called 
dbscripts/xml/data/locale/[localeName]/email_templates_data.xml. 
Each email has an identifier (called email_key in the XML file) such as 
NEW_ARCHIVE_NOTIFY. This identifier is used in the PHP code to retrieve a 
particular email template, including body text and subject.

The following code retrieves and sends the NEW_ARCHIVE_NOTIFY email, which is 
sent to non­Administrator submitters as an acknowledgment when they enter a new 
archive. (This snippet assumes that $archiveId is set to the new archive's ID.)

// Load the required MailTemplate class
import('mail.MailTemplate');

// Retrieve the mail template by name.
$mail = &new MailTemplate('NEW_ARCHIVE_NOTIFY');

if ($mail­>isEnabled()) {
// Get the site object and assign the contact person as the recipient
$site =& Request::getSite();
$mail­>addRecipient($site­>getContactEmail(), $site­>getContactName());

// This template contains variable names of the form {$variableName} that need to
// be replaced with the appropriate values. Note that while the syntax is similar
// to that used by Smarty templates, email templates are not Smarty templates. Only
// direct variable replacement is supported.
$mail­>assignParams(array(

'archiveTitle' => 'This is the title of the archive',
'siteTitle' => $site­>getTitle(),
'loginUrl' => Request::url('admin', 'manage', $archiveId)

));

$mail­>send();
}

Database Interaction with DAOs

The following code snippet retrieves an archive object using the archive ID supplied 
in the $archiveId variable, changes the title, and updates the database with the 

Page 28



new values.

// Fetch the archive object using the archive DAO.
$archiveDao = &DAORegistry::getDAO('ArchiveDAO');
$archive = &$archiveDao­>getArchive($archiveId);

$archive­>setTitle('This is the new archive title.');

// Update the database with the modified information.
$archiveDao­>updateArchive($archive);

Similarly, the following snippet deletes an archive from the database.

// Fetch the archive object using the archive DAO.
$archiveDao = &DAORegistry::getDAO('ArchiveDAO');
$archive = &$archiveDao­>getArchive($archiveId);

// Delete the archive from the database.
$archiveDao­>deleteArchive($archive);

The previous task could be accomplished much more efficiently with the following:

// Delete the archive using the archive DAO.
$archiveDao = &DAORegistry::getDAO('ArchiveDAO');
$archiveDao­>deleteArchiveById($archiveId);

Generally speaking, the DAOs are responsible for deleting dependent database 
entries. For example, deleting an archive should delete that archive's records and 
entries from the database. Note that this is accomplished in PHP code rather than 
using database triggers or other database­level integrity functionality in order to 
keep database requirements as low as possible.

Page 29



User Interface

The User Interface is implemented as a large set of Smarty templates, which are 
called from the various Page classes. (See the section titled “Request Handling”.)

These templates are responsible for the HTML markup of each page; however, all 
content is provided either by template variables (such as archive titles) or through 
locale­specific translations using a custom Smarty function.

You should be familiar with Smarty templates before working with Harvester2 
templates. Smarty documentation is available from http://smarty.php.net.

Variables

Template variables are generally assigned in the Page or Form class that calls the 
template. In addition, however, many variables are assigned by the 
TemplateManager class and are available to all templates:

● defaultCharset: the value of the “client_charset” setting from the 
[i18n] section of the config.inc.php configuration file

● currentLocale: The symbolic name of the current locale
● baseUrl: Base URL of the site, e.g. http://www.mylibrary.com
● requestedPage: The symbolic name of the requested page
● pageTitle: Default name of locale key of page title; this should be replaced 

with a more appropriate setting in the template
● siteTitle: Site title from Site Configuration
● pagePath: Path of the requested page and operation, if applicable, prepended 

with a slash; e.g. /browse/index
● currentUrl: The full URL of the current page
● dateFormatTrunc: The value of the date_format_trunc parameter in the 

[general] section of the config.inc.php configuration file; used with the 
date_format Smarty function

● dateFormatShort: The value of the date_format_short parameter in the 
[general] section of the config.inc.php configuration file; used with the 
date_format Smarty function

● dateFormatLong: The value of the date_format_long parameter in the 
[general] section of the config.inc.php configuration file; used with the 

Page 30

http://www.mylibrary.com/
http://smarty.php.net/


date_format Smarty function
● datetimeFormatShort: The value of the datetime_format_short 

parameter in the [general] section of the config.inc.php configuration 
file; used with the date_format Smarty function

● datetimeFormatLong: The value of the datetime_format_long parameter 
in the [general] section of the config.inc.php configuration file; used 
with the date_format Smarty function

● currentLocale: The name of the currently applicable locale; e.g. en_US
● userSession: The current Session object
● isUserLoggedIn: Boolean indicating whether or not the user is logged in
● loggedInUsername: The current user's username, if applicable
● page_links: The maximum number of page links to be displayed for a paged 

list.
● items_per_page: The maximum number of items to display per page of a 

paged list.

If multiple languages are enabled, the following variables are set:
● enableLanguageToggle: Set to true when this feature is enabled
● languageToggleLocales: Array of selectable locales

Functions & Modifiers

A number of functions have been added to Smarty's built­in template functions to 
assist in common tasks such as localization.

● translate (e.g. {translate key=”my.locale.key” myVar=”value”}): This function 
provides a locale­specific translation. (See the section called Localization.) 
Variable replacement is possible using Smarty­style syntax; using the above 
example, if the locale.xml file contains:

<message key=”my.locale.key”>myVar equals “{$myVar}”.</message>

The resulting output will be:
myVar equals “value”.

(Note that only direct variable replacements are allowed in locale files. You 
cannot call methods on objects or Smarty functions.)

● assign (e.g. {translate|assign:”myVar” key=”my.locale.key”}): Assign a value to a 
template variable. This example is similar to {translate ...}, except that 
the result is assigned to the specified Smarty variable rather than being 
displayed to the browser.

Page 31



● html_options_translate (e.g. {html_options_translate values=$myValuesArray 
selected=$selectedOption}): Convert an array of the form

array('optionVal1' => 'locale.key.option1', 'optionVal2' => 'locale.key.option2')

to a set of HTML <option>...</option> tags of the form
<option value=”optionVal1”>Translation of “locale.key.option1” here</option>
<option value=”optionVal2”>Translation of “locale.key.option2” here</option>

for use in a Select menu.
● get_help_id (e.g. {get_help_id key=”myHelpTopic” url=”true”}): Displays the 

topic ID or a full URL (depending on the value of the url parameter) to the 
specific help page named.

● icon (e.g. {icon name=”mail” alt=”...” url=”http://link.url.com” disabled=”true”}): 
Displays an icon with the specified link URL, disabled or enabled as specified. 
The name paramter can take on the values comment, delete, edit, letter, 
mail, or view.

● help_topic (e.g. {help_topic key="(dir)*.page.topic" text="foo"}): Displays a 
link to the specified help topic, with the text parameter defining the link 
contents.

● page_links: (e.g. {page_links iterator=$submissions}): Displays the page links 
for the paged list associated with the ItemIterator subclass (in this 
example, $submissions).

● page_info: (e.g. {$page_info name="submissions" iterator=$submissions}): 
Displays the page information (e.g. page number and total page count) for the 
paged list associated with the ItemIterator subclass (in this case, 
$submissions).

● iterate: (e.g. {$iterate from=submissions item=submission}): Iterate through 
items in the specified ItemIterator subclass, with each item stored as a 
smarty variable with the supplied name. (This example iterates through items 
in the $submissions iterator, which each item stored as a template variable 
named $submission.) Note that there are no dollar­signs preceding the 
variable names ­­ the specified parameters are variable names, not variables 
themselves.

● strip_unsafe_html: (e.g. {$myVar|strip_unsafe_html}): Remove HTML tags 
and attributes deemed as “unsafe” for general use. This modifier allows 
certain simple HTML tags to be passed through to the remote browser, but 
cleans anything advanced that may be used for XSS­based attacks.

● call_hook: (e.g. {call_hook name=”Templates::Hook::Name::Here”}) Call a plugin 
hook by name. Any plugins registered against the named hook will be called.

There are many examples of use of each of these functions in the templates 
provided with Harvester2.

Page 32

http://link.url.com/


Plugins

The PKP Harvester2 contains a full­fledged plugin infrastructure that provides 
developers with several mechanisms to extend and modify the system's behavior 
without modifying the codebase. The key concepts involved in this infrastructure 
are categories, plugins, and hooks.

A plugin is a self­contained collection of code and resources that implements an 
extension of or modification to Harvester2. When placed in the appropriate 
directory within the codebase, it is loaded and called automatically depending on 
the category it is part of.

Each plugin belongs to a single category, which defines its behavior. For example, 
plugins in the schemas category (which implement functions specific to a particular 
metadata schema) are loaded whenever a schema­specific function is used (such as 
when a record is viewed). These plugins must implement certain methods which 
are used for delegation of control between the plugin and Harvester2.

Hooks are used by plugins as a notification tool and to override behaviors built into 
Harvester2. At many points in the execution of Harvester2 code, a hook will be 
called by name – for example, LoadHandler in index.php. Any plugins that have 
been loaded and registered against that hook will have a chance to execute code to 
alter the default behavior of Harvester2 around the point at which that hook was 
called.

While most of the plugin categories built into Harvester2 relate to specific aspects of 
the system, such as harvester protocols and schemas, there is a generic category 
for plugins that do not suit any of the other categories. These are more complicated 
to write but offer much more flexibility in the types of alterations they can make to 
Harvester2. Most hooks are generally intended for use with plugins in this category 
(although any plugin category can register against any hook, with the only 
limitation being that the category must be loaded in order to be effective).

Page 33



Objects & Classes

Plugins in Harvester2 are object­oriented. Each plugin extends a class defining its 
category's functions and is responsible for implementing them.

Category Base Class
generic GenericPlugin (classes/plugins/GenericPlugin.inc.php)

harvesters HarvesterPlugin (classes/plugins/HarvesterPlugin.inc.php)

preprocessors PreprocessorPlugin (classes/plugins/PreprocessorPlugin.inc.php)

postprocessors PostprocessorPlugin (classes/plugins/PostprocessorPlugin.inc.php)

schemas SchemaPlugin (classes/plugins/SchemaPlugin.inc.php)

Each base class contains a description of the functions that must be implemented by 
plugins in that category.

Plugins are managed by the PluginRegistry class (implemented in 
classes/plugins/PluginRegistry.inc.php). They can register hooks by using 
the HookRegistry class (implemented in 
classes/plugins/HookRegistry.inc.php).

Registration Function

Whenever Harvester2 loads and registers a plugin, the plugin's register(...) 
function will be called. This is an opportunity for the plugin to register against any 
hooks it needs, load configuration, initialize data structures, etc.

Another common task to perform in the registration function is loading locale data. 
Locale data should be included in subdirectories of the plugin's directory called 
locale/[localeName]/locale.xml, where [localeName] is the standard 
symbolic name of the locale, such as en_US for US English. In order for these data 
files to be loaded, plugins should call $this­>addLocaleData(); in the 
registration function after calling the parent registration function.

Page 34



Hook Registration and Callback

As described above, plugins will usually register against hooks in the plugin's 
register(...) function. When registering against a hook, the plugin must specify 
a callback function; when a hook call is encountered the hook registry will call, in 
the order in which they were registered, all callbacks registered against the hook. 
This process can be interrupted by any particular callback by returning a true from 
the callback function.

The process by which a plugin registers against a hook is as follows:
HookRegistry::register(

'Templates::Hook::Name::Here',

array(&$this, 'callback')

);

In the example above, the parameters to HookRegistry::register are:

1. The name of the hook. See the complete list of hooks below.

2. The callback function to which control should be passed when the hook is 
encountered. This is the same callback format used by PHP's 
call_user_func function; see the documentation at http://php.net for 
more information. It is important that $this be included in the array by 
reference, or you may encounter problems with multiple instances of the 
plugin object.

The definition of the callback function (named and located in the above registration 
call) is:

function callback($hookName, $args) {

$params =& $args[0];

$smarty =& $args[1];

$output =& $args[2];

...

}

The parameter list for the callback function is always the same:

1. The name of the hook that resulted in the callback receiving control (which 
can be useful when several hook registrations are made with the same 

Page 35

http://php.net/


callback function), and

2. An array of additional parameters passed to the callback. The contents of 
this array depend on the hook being registered against. Since this is a 
template hook, the callback can expect the three parameters named above.

The array­based passing of parameters is slightly cumbersome, but it allows hook 
calls to compatibly pass references to parameters if desired. Otherwise, for example, 
the above code would receive a duplicated Smarty object rather than the actual 
Smarty object and any changes to attributes of the $smarty object would disappear 
upon returning.

Finally, the return value from a hook callback is very important. If a hook callback 
returns true, the hook registry considers this callback to have definitively 
“handled” the hook and will not call further registered callbacks on the same hook. 
If the callback returns false, other callbacks registered on the same hook after the 
current one will have a chance to handle the hook call.

If another plugin (or even the same plugin) was registered again against the same 
hook, and the first registrant returned true from the hook callback, second callback 
would not be called.

Plugin Management

In the plugin class, there are three functions that provide metadata about the 
plugin: getName(), getDisplayName(), and getDescription(). These are part 
of a plugin management interface that is available to the Administrator.

The result of the getName() call is used to refer to the plugin symbolically and 
need not be human­readable; however, the getDisplayName() and 
getDescription() functions should return localized values. This was not done in 
the above example for brevity.

Page 36



The management interface allows plugins to specify various management functions 
the Administrator can perform on the plugin using the getManagementVerbs() 
and manage($verb, $args) functions. getManagementVerbs() should return 
an array of two­element arrays as follows:

$verbs = parent::getManagementVerbs();

$verbs[] =  array('func1', Locale::translate('my.localization.key.for.func1'));

$verbs[] =  array('func2', Locale::translate('my.localization.key.for.func2'));

Note that the parent call should be respected as above, as some plugin categories 
provide management verbs automatically.

Using the above sample code, the plugin should be ready to receive the 
management verbs func1 and func2 as follows (once again respecting any 
management verbs provided by the parent class):

function manage($verb, $args) {

if (!parent::manage($verb, $args)) switch ($verb) {

case 'func1':

// Handle func1 here.

break;

case 'func2':

// Handle func2 here.

break;

default:

return false;

}

return true;

}

Additional Plugin Functionality

There are several additional plugin functionalities that may prove useful:

● Plugin Settings: Plugins can store and retrieve settings with a mechanism 
similar to Archive Settings. Use the Plugin class's getSetting and 

Page 37



updateSetting functions.
● Templates: Any plugin can keep templates in its plugin directory and display 

them by calling:
$templateMgr­>display($this­>getTemplatePath() . 'templateName.tpl');

See the native import/export plugin for an example.
● Schema Management: By overriding getInstallSchemaFile() and 

placing the named schema file in the plugin directory, generic plugins can 
make use of Harvester2's schema­management features. This function is called 
on Harvester2 install or upgrade.

● Data Management: By overriding getInstallDataFile() and placing the 
named data file in the plugin directory, generic plugins can make use of 
Harvester2's data installation feature. This function is called on Harvester2 
install or upgrade.

● Helper Code: Helper code in the plugin's directory can be imported using 
$this­>import('HelperCode'); // imports HelperCode.inc.php

Hook List

The following list describes all the hooks built into Harvester2 as of release 2.0. 
Ampersands before variable names (e.g. &$sourceFile) indicate that the 
parameter has been passed to the hook callback in the parameters array by 
reference and can be modified by the hook callback. The effect of the hook 
callback's return value is specified where applicable; in addition to this, the hook 
callback return value will always determine whether or not further callbacks 
registered on the same hook will be skipped.

Name Parameters Description
LoadHandler &$page, &$op, 

&$sourceFile Called by Harvester2's main index.php script 
after the page (&$page), operation (&$op), and 
handler code file (&$sourceFile) names have 
been determined, but before $sourceFile is 
loaded. Can be used to intercept browser 
requests for handling by the plugin. Returning 
true from the callback will prevent Harvester2 
from loading the handler stub in $sourceFile.

ArchiveForm::Archive &$archiveForm Called at the end of the Archive form's 

Page 38



Name Parameters Description
Form , 

$harvesterPlu
ginName

constructor; the archive form object and current 
harvester plugin name are passed in as 
parameters.

ArchiveForm::display &$archiveForm
, 
&$templateMgr
, 
$harvesterPlu
ginName

Called just before the Archive form is displayed. 
The archive form object, template manager 
(extended Smarty object), and harvester plugin 
name are passed as parameters.

ArchiveForm::initDat
a

&$archiveForm
, &$archive, 
$harvesterPlu
ginName

Called after the archive form's data is initialized 
for the given archive with the given harvester 
plugin name, but before the form is overridden 
with any posted values the user may have 
already supplied.

ArchiveForm::getPara
meterNames

&$archiveForm
, 
&$parameterNa
mes, 
&$harvesterPl
uginName

Called before the archive form returns a list of 
parameter names. This hook can be used to 
extend the list of parameters included on the 
archive form.

archiveForm::execute &$archiveForm
, &$archive, 
$harvesterPlu
ginName

Called after the archive form has updated or 
created the current archive in response to a 
user's submission of the form but before, if 
applicable, Harvester2 sends an email to the 
administrator notifying them of a new archive 
submission. 

CrosswalkForm::Cross
walkForm

&$crosswalkFo
rm Called at the end of the Crosswalk form's 

constructor.
CrosswalkForm::execu
te

&$crosswalkFo
rm, 
&$crosswalk

Called after the crosswalk form has updated a 
crosswalk in response to an administrator 
request.

ArchiveDAO::_returnA
rchiveFromRow

&$archive, 
&$row Called after an Archive object is created from the 

given database row, before it is returned to the 
caller.

[something]DAO::Cons
tructor

&$dao, 
&$dataSource Called when a DAO is constructed with the given 

data source. To prevent the default constructor 
behavior from occurring, the hook registrant 
should return true from its callback function. 

Page 39



Name Parameters Description

This hook should only be used with PHP >= 
4.3.0.

[Anything]DAO::[Any 
function calling 
DAO::retrieve]

&$sql, 
&$params, 
&$value

Any DAO function calling DAO::retrieve will 
cause a hook to be triggered. The SQL statement 
in &$sql can be modified, as can the ADODB 
parameters in &$params. If the hook callback is 
intended to replace the function of this call 
entirely, &$value should receive the retrieve 
call's intended result and the hook should return 
true. This hook should only be used with PHP 
>= 4.3.0.

[Anything]DAO::[Any 
function calling 
DAO::retrieveCached]

&$sql, 
&$params, 
&$secsToCache
, &$value

Any DAO function calling 
DAO::retrieveCached will cause a hook to be 
triggered. The SQL statement in &$sql can be 
modified, as can the ADODB parameters in 
&$params and the seconds­to­cache value in 
&$secsToCache. If the hook callback is 
intended to replace the function of this call 
entirely, &$value should receive the retrieve 
call's intended result and the hook should return 
true. This hook should only be used with PHP 
>= 4.3.0.

[Anything]DAO::[Any 
function calling 
DAO::retrieveLimit]

&$sql, 
&$params, 
&$numRows, 
&$offset, 
&$value

Any DAO function calling 
DAO::retrieveCached will cause a hook to be 
triggered. The SQL statement in &$sql can be 
modified, as can the ADODB parameters in 
&$params, and the fetch seek and limit specified 
in &$offset and &$numRows. If the hook 
callback is intended to replace the function of 
this call entirely, &$value should receive the 
retrieve call's intended result and the hook 
should return true. This hook should only be 
used with PHP >= 4.3.0.

[Anything]DAO::[Any 
function calling 
DAO::retrieveRange]

&$sql, 
&$params, 
&$dbResultRan
ge, &$value

Any DAO function calling 
DAO::retrieveRange will cause a hook to be 
triggered. The SQL statement in &$sql can be 

Page 40



Name Parameters Description

modified, as can the ADODB parameters in 
&$params and the range information in 
&$dbResultRange. If the hook callback is 
intended to replace the function of this call 
entirely, &$value should receive the retrieve 
call's intended result and the hook should return 
true. This hook should only be used with PHP 
>= 4.3.0.

[Anything]DAO::[Any 
function calling 
DAO::update]

&$sql, 
&$params, 
&$value

Any DAO function calling DAO::update will 
cause a hook to be triggered. The SQL statement 
in &$sql can be modified, as can the ADODB 
parameters in &$params. If the hook callback is 
intended to replace the function of this call 
entirely, &$value should receive the retrieve 
call's intended result and the hook should return 
true. This hook should only be used with PHP 
>= 4.3.0.

Locale::_cacheMiss &$id, 
&$locale, 
&$value

Called when a locale key cannot be found in the 
current locale cache. This can be used to extend 
the default set of locale data with additional 
keys. To override the default behavior, the hook 
registrant should specify a return value in 
&$value and return true from the callback 
function.

Installer::Installer &$installer, 
&$descriptor, 
&$params

Called in the constructor of the Installer class. To 
prevent the default behavior of the Installer's 
constructor, the callback registrant should return 
true from its callback function.

Installer::preInstal
l

&$installer, 
&$result Called during the Installer's pre­installation 

phase. The hook registrant has the opportunity 
to alter the return value (&$result)of the 
preInstall function.

Installer::postInsta
ll

&$installer, 
&$result Called during the Installer's post­installation 

phase. The hook registrant has the opportunity 
to alter the return value (&$result)of the 

Page 41



Name Parameters Description

postInstall function.
Installer::parseInst
aller

&$installer, 
&$result Called after the Installer parses the installation 

script. The hook registrant has the opportunity 
to alter the return value (&$result) of the 
parseInstaller function.

Installer::executeIn
staller

&$installer, 
&$result Called after the Installer executes the 

installation script. The hook registrant has the 
opportunity to alter the return value 
(&$result) of the executeInstaller 
function.

Installer::updateVer
sion

&$installer, 
&$result Called after the Installer updates the version of 

the installation. The hook registrant has the 
opportunity to alter the return value 
(&$result) of the updateVersion function.

SchemaPlugin::indexR
ecord

&$archive, 
&$record, 
&$field, 
&$value, 
&$attributes

Called before a schema plugin updates the 
indexing of an entry. To prevent the schema 
plugin from indexing the entry (i.e. if the hook 
registrant indexes it itself), the hook registrant 
should return true from the callback function.

VersionDAO::_returnV
ersionFromRow

&$version, 
&$row Called after a Version object is created from the 

given database row, before it is returned to the 
caller.

TemplateManager::dis
play

&$templateMgr
, &$template, 
&$sendContent
Type, 
&$charset

Called before the given template manager 
(extended Smarty object) displays the given 
template. To prevent the template from being 
displayed, the hook registrant should return 
true from the callback function.

Request::redirect &$url Called before Request::redirect performs a 
redirect to &$url. Returning true will prevent 
Harvester2 from performing the redirect after 
the hook is finished. Can be used to intercept 
and rewrite redirects.

Request::getBaseUrl &$baseUrl Called the first time Request::getBaseUrl is 
called after the base URL has been determined 

Page 42



Name Parameters Description

but before returning it to the caller. This value is 
used for all subsequent calls.

Request::getBasePath &$basePath Called the first time Request::getBasePath is 
called after the base path has been determined 
but before returning it to the caller. This value is 
used for all subsequent calls.

Request::getIndexUrl &$indexUrl Called the first time Request::getIndexUrl is 
called after the index URL has been determined 
but before returning it to the caller. This value is 
used for all subsequent calls.

Request::getComplete
Url

&$completeUrl Called the first time 
Request::getCompleteUrl is called after the 
complete URL has been determined but before 
returning it to the caller. This value is used for 
all subsequent calls.

Request::getRequestU
rl

&$requestUrl Called the first time Request::getRequestUrl 
is called after the request URL has been 
determined but before returning it to the caller. 
This value is used for all subsequent calls.

Request::getQueryStr
ing

&$queryString Called the first time 
Request::getQueryString is called after the 
query string has been determined but before 
returning it to the caller. This value is used for 
all subsequent calls.

Request::getRequestP
ath

&$requestPath Called the first time 
Request::getRequestPath is called after the 
request path has been determined but before 
returning it to the caller. This value is used for 
all subsequent calls.

Request::getServerHo
st

&$serverHost Called the first time Request::getServerHost 
is called after the server host has been 
determined but before returning it to the caller. 
This value is used for all subsequent calls.

Request::getProtocol &$protocol Called the first time Request::getProtocol is 

Page 43



Name Parameters Description

called after the protocol (http or https) has 
been determined but before returning it to the 
caller. This value is used for all subsequent calls.

Request::getRemoteAd
dr

&$remoteAddr Called the first time Request::getRemoteAddr 
is called after the remote address has been 
determined but before returning it to the caller. 
This value is used for all subsequent calls.

Request::getRemoteDo
main

&$remoteDomai
n Called the first time 

Request::getRemoteDomain is called after the 
remote domain has been determined but before 
returning it to the caller. This value is used for 
all subsequent calls.

Request::getUserAgen
t

&$userAgent Called the first time Request::getUserAgent 
is called after the user agent has been 
determined but before returning it to the caller. 
This value is used for all subsequent calls.

Request::getRequeste
dJournalPath

&$journal Called the first time 
Request::getRequestedJournalPath is 
called after the requested journal path has been 
determined but before returning it to the caller. 
This value is used for all subsequent calls.

FieldDAO::_returnFie
ldFromRow

&$field, 
&$row Called after a Field object is created from the 

given database row, before it is returned to the 
caller.

CrosswalkDAO::_retur
nCrosswalkFromRow

&$field, 
&$row Called after a Crosswalk object is created from 

the given database row, before it is returned to 
the caller.

RecordDAO::_returnRe
cordFromRow

&$record, 
&$row Called after a Record object is created from the 

given database row, before it is returned to the 
caller.

SchemaDAO::_returnSc
hemaFromRow

&$schema, 
&$row Called after a Schema object is created from the 

given database row, before it is returned to the 
caller.

Harvester::insertEnt
ry

&$archive, 
&$record,  Called before Harvester2 inserts an entry in the 

Page 44



Name Parameters Description
&$field, 
&$value, 
&$attributes

given field of the given record of the given 
archive with the given attributes. To prevent the 
default behavior from occurring, the hook 
registrant should return true from its callback 
function.

Mail::send &$mail, 
&$recipients, 
&$subject, 
&$mailBody, 
&$headers, 
&$additionalP
arameters

Called before Harvester2 sends the email 
message with the given parameters. To prevent 
this from occurring (i.e. if the hook callback 
takes care of sending the message itself), it 
should return true from its callback function.

EmailTemplateDAO::_r
eturnEmailTemplateFr
omRow

&$emailTempla
te, &$row Called after an email template object is created 

from the given database row, before it is 
returned to the caller.

RTDAO::_returnVersio
nFromRow

&$version, 
&$row Called after RTDAO builds a Reading Tools 

Version (&$version) object from the database 
row (&$row), but before the Reading Tools 
version object is passed back to the calling 
function.

RTDAO::_returnSearch
FromRow

&$search, 
&$row Called after RTDAO builds a Reading Tools 

Search (&$search) object from the database 
row (&$row), but before the Reading Tools 
search object is passed back to the calling 
function.

RTDAO::_returnContex
tFromRow

&$context, 
&$row Called after RTDAO builds a Reading Tools 

Context (&$context) object from the database 
row (&$row), but before the Reading Tools 
context object is passed back to the calling 
function.

Template::Admin::Arc
hives::displayHarves
terForm

&$params, 
&$smarty, 
&$output

Called after the built­in parts of the archive form 
have been displayed; this hook can be used to 
extend the form with additional fields. 
$params['plugin'] contains the name of the 
harvester plugin.

Template::Admin::Ind
ex::SiteManagement

&$params, 
&$smarty, 
&$output

Called at the end of the items list in the Site 
Management bulleted list.

Page 45



Name Parameters Description
Template::Admin::Ind
ex::AdminFunctions

&$params, 
&$smarty, 
&$output

Called at the end of the items list in the Admin 
Functions bulleted list.

Template::Browse::Ar
chiveInfo::DisplayEx
tendedArchiveInfo

&$params, 
&$smarty, 
&$output

Called after the built­in parts of the archive 
information template have been displayed; this 
hook can be used to add information to this 
page. $params['archive'] contains the 
archive object in question.

Page 46



Translating Harvester2

To add support for other languages, XML files in the following directories must be 
translated and placed in an appropriately named directory (using ISO locale codes, 
e.g. fr_FR, is recommended):

● locale/en_US: This directory contains the main locale file with the majority 
of localized Harvester2 text.

● dbscripts/xml/data/locale/en_US: This directory contains localized 
database data, such as email templates.

● help/en_US: This directory contains the help files for Harvester2.
● rt/en_US: This directory contains the Reading Tools.
● plugins/[plugin category]/[plugin name]/locale, where applicable: 

These directories contain plugin­specific locale strings.

The only critical files that need translation for the system to function properly are 
found in locale/en_US, dbscripts/xml/data/locale/en_US, and 
registry/locale/en_US.

New locales must also be added to the file registry/locales.xml, after which 
they can be installed in the system through the site administration web interface.

Translations can be contributed back to PKP for distribution with future releases of 
Harvester2.

Page 47



Obtaining More Information

For more information, see the PKP web site at http://pkp.sfu.ca. There is a 
Harvester2 support forum available at http://pkp.sfu.ca/support/forum; this 
is the preferred method of contacting the Harvester2 team. Please be sure to search 
the forum archives to see if your question has already been answered.

If you have a bug to report, see the bug tracking system at 
http://pkp.sfu.ca/bugzilla.

The team can be reached by email at pkp­support@sfu.ca.

Page 48

mailto:pkp-support@sfu.ca
http://pkp.sfu.ca/bugzilla
http://pkp.sfu.ca/support/forum
http://pkp.sfu.ca/

	Introduction
	About the Public Knowledge Project
	About PKP Harvester2
	About This Document
	Document Conventions


	Technologies
	Design Overview
	Introduction
	Coding Conventions
	General
	User Interface
	PHP Code
	Database
	Security

	File Structure
	Request Handling
	A Note on URLs
	Request Handling Example
	Locating Request Handling Code


	Database Design
	Overview
	Miscellaneous Tables

	Class Reference
	Class Hierarchy
	Page Classes
	Introduction

	Model Classes
	Data Access Objects (DAOs)
	Support Classes
	Sending Email Messages
	Internationalization
	Forms
	Configuration
	Core Classes
	Database Support
	Security
	Session Management
	Template Support
	Paging Classes
	Plugins

	Common Tasks
	Sending Emails
	Database Interaction with DAOs


	User Interface
	Variables
	Functions & Modifiers

	Plugins
	Objects & Classes
	Registration Function
	Hook Registration and Callback
	Plugin Management
	Additional Plugin Functionality
	Hook List

	Translating Harvester2
	Obtaining More Information

