PUBLIC
KNOW
LEDGE

PKP Harvester2

Version 2.0

Technical Reference

SIMON FRASER
UNIVERSITY

library

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/2.0/ca

or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

SOME RIEHTE RESERVED

http://creativecommons.org/licenses/by-nc-nd/2.0/ca/

PUBLIC
KNOW
LEDGE

= SIMON FRASER

umvsnsm!libl'ary

Table of Contents

sV ugoTe 18 (ot o) s PO PSPPI 3
About the Public Knowledge PrOjeCt.........uuiiiieeeeeiiiiieeeeeeeeeiiiiiteeeeeeeeeivveeeeaeeeans 3
ADOUL PKP HArVESLEI2.....cciiiieieeeeieiiiiiiiiieeeee e e e e e e eeeeeeeteeeeeeeeeaeeeaeseeeeseesnnnnnsnnsnnnenns 3
AboUt ThiS DOCUIMENL.......ccccciiiiiiiiieeeeeeeeeeeecccctirrreeeeeeeeeeeeeeenrnsareeeeeeeaeeseessnnnsnns 4

Document CONVENTIONS.u.uuereeriuuiieeeeertriiiaeeeeetiaseeeereeereeeeeeeseesessesesrssssssssnsnsns 4

TECHNOLOZIES. ..eeeiiiiiiiiieieeeeeee ettt e e e e e e e e e e e st e e e e e e eeeeeeenaraaees 5

DESIZIN OVEIVIEW. ..cevuuuiieiiiiiiieeeeetmiaseaaaaaaaeaeaerererereeeeeeteteressestssssssssssnsssnsnsnsnssnssssenns 6
sV ugoTe 11 atu (o) s PO PSP 7
COAING CONVENTIONS. 1.eiiieuiiriireeeereirrteeeeeeesttreeeeeessssrrreeeeessssnsrseeessssssssseeeesssssnnes 9

(€SS 11 | PP 9
USET INEEITACE. ...eiieiiei ettt e e e e e e e e e e arraeeeeeeeeeee e nnnnnnns 9
PHP COttt e e e e e e e e e e e e e e e e e e ee e e s e e e eeasaeeeeeesnnssseeesennnssneens 9
DAtADASE.uuvvieiiiieieieeeee e e e e e e e eeee e e e aaeeeaeeaaeeaaeeae e e e nnnnnaaaraaaan 10
SO CUTILY .. ettt ettt et e e s e s e s e e e e e e e e e eeeeeeeeeeeeaeeeeaeneenesensnnnnnnns 10
File StIUCTUTE. ...eviieieeeeeee ettt e e e e e e et e e e e e e e e e e ee s aaeaaaaeaeaeeeeesssnnnnnnns 11
Request HANAIING......ccooeriiiiiiiiiiiiiiieeeeeee et 12
A NOLE ON URLS....uiiiiiiiiiiiee ettt et eettrtee e e e eeeesaaees e s eeesessaasnesaaens 12
Request Handling EXample........ccccuviiieiiiiiiiiiiieeeiieiieeee e eeeeeeee e ieveeeees 13
Locating Request Handling Code..........cccccuuiriiieiieiiiiiiiieeeeeeciiieeeee e ivvneeea 14

Database DESITN....cueeiiiriiuiiiiieiiieiiiiiteee e eettte e e e eertrr e e e e s e sitre e e e e s ssabtaeeee e e s snnaaaeas 15
OVETVIEW. ...cetitieeieeiiiiee e e ettt e e e ettt e e e e e tttaa e e e eeetanaa s s eeaaaeseeeeeeeeeeenensnnnnnnnnnnnnnns 15
Miscellaneous TabIes..........ccoeiiiiiiiiiiiiiceeeee e e e e e mmeeeeeeeeeeeens 16

Class REfEIEINICE.ceeeeeiii e e e e e e e re e e e e e e e e e e e e nannasaaaeeaeeeeas 17
Class HIETarChy.........ceiieecuiieeiiciiiieeeecccitee e eeieee e e e teee e s eeear e e e e s aaree e s e sanaeeeennnns 17
PAZE ClaASSES...uuuuvrrieeieeeiiiiieeee e e ettt e e e s e ss ettt eeeeeesabbteeeesesssaatbaaeeeessssnsssaeaeesanns 20

| Ha L C0)a L1 (adu (o) s PO PP PP 20
IMOAEL ClASSES. .. .uueeeeeeeeeeeeeeeeiieiiii i reeeeee e e e e e e e e e eesesarerrreeeeeeeeeaeaesessnnssnssneeeseeaes 20
Data Access ODJECtS (DADS)...ccceiiieeeeeeriiiiiiiiiiiireeeeeeeeeeeeeeeeeeeeesesssssssssnnnmmesnssnns 21
L U] 0] 00 A O F= T F PR 22

Sending EMail MeSSAZES.ccciverurriiiieeiiiiiiiiieeeeeesiiireeeeesesiirreeeeesessnnnrseeeesenns 22

INternatioNaliZation..........uueeiieeeeiieeeee e e e e et ee e e e e eeare e e e e e e e eaaraaeeas 22

FOTIMIS. ..ttt e e e s s e e e e ee bt e e e e e aaaaseeeeanennnns 23

CONFIGUIATION. ¢ttt ettt et e et e et e e et e e et ee e e abeeessareeessareeeas 24

COTE ClASSES...cceeerrrruririiiieeeeeeeeeeeeeeetetttttaeaae i asaaeeeeeeeeeeseesssmmesasaasssnsnnssnssssnnns 24

Database SUPPOTIL....ccccuutiiiiiiieieitie ettt e e et e e et e e e s eaneee s 25

SO CUTILY .. eeeeeetitiee e e ettt e ettt e e et s s e s s e e e s e s e eeeeeeeeeeeeeesasessenesssasnnnnsnnnns 26

SesSioN MaNAZeMENL. ..ccceiiiiiiieeieeeeeeeeieeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeasens 26

PUBLIC SIMON FRASER I 3
KNOW umvensnv'lbrary

TEMPIALE SUPPOTIT...uviiiiiieiiiiieieeeiirieeeeeeette e e eeereeeeeseerrreeeessaareeeeeesnssaeeesnssnseees 26
PaZinNg ClasSeS...ceeeiiiiiiiiiiieieeeieiiiiiitirtett ettt et e e e e e e e eeeesesssssssasmmasaeeeeesanraees 26
PIUGINS. .. ttttttitieeeeeeee et ee e e et e e e e e e sttt e e e e s e s aaabeeeeeeesnnssaeeeeeesnnrraeeas 27
ComMMON TASKS...ceeeiiiieiieeiiiieeeee ettt ettt e e e e ettt e e e e s s araeeee s e saanee 28
Sending EMails.....cccoouuiiiiiiiiiiiiiieeetee et 28
Database Interaction With DAOS..........ccceiiiiiiiiiiieiiiriieeeeeeeeeeee e 28

USET INTEITACE. .. i cueiiiiieeee ittt e e e s et rre e e e e s e sasbbaeeeeessnnnnns 30
VATTADIES. ...ceiiiiiiieiieee ettt ettt sttt e st e e st e e e bae e s abeeeeane 30
FUNCHIONS & MOAIfIETS...cciieeiiiiiieeieeiiiiieeee ettt e e e e e e e s e e 31
PIUGINIS. ...ttt ettt e ettt e et e s e sa e e st e e e bb e e e b te e et eeeeareee s 33
ODJECLS & ClASSES..ceeiieuuiiiieeieeiiieiteeeiitee e ettt e e e et ee e s st eeeesearaeeessssareeeessnnnne 34
Registration FUNCHION.cciiiiiiiceeeee e ee e et 34
Hook Registration and CallbacK...........ccccuureiiiieiiiiiiiieee e e e e 35
Plugin Management......ccuuuueeeeierrriiireeeeeseniiieeeeeeeeesierreeeessssssnsreeeeessssssnssseeesssnns 36
Additional Plugin FUNCONALItY.......ccceeeeuurieeeeeiiiiieeeeeciiieeeeeeeiveeeeeeeeereeeeeesaenneas 37

5 (00) Q) 5 1Y AP PP UP PP PPRRPPPSPPPRRN 38
Translating HarvVeStET2......ccuuuvieeieriiieeieeiiiteeeeeireeeseseieeeeeessareeesessssseesssssssneesssnnns 47
Obtaining More INfOrmation...........ccccuureeeeeeiiieeeeeeeereeeeeecire e e e e ereeeeeesereeeeeeeansaeas 48

Page 2

PUBLIC 7 SIMON FRASER I ¢
KNOW umvsnsn'vllbl'ary
Introduction

About the Public Knowledge Project

The Public Knowledge Project (http://pkp.sfu.ca) is dedicated to exploring
whether and how new technologies can be used to improve the professional and
public value of scholarly research. Bringing together scholars, in a number of fields,
as well as research librarians, it is investigating the social, economic, and technical
issues entailed in the use of online infrastructure and knowledge management
strategies to improve both the scholarly quality and public accessibility and
coherence of this body of knowledge in a sustainable and globally accessible form.
The project seeks to integrate emerging standards for digital library access and
document preservation, such as Open Archives and InterPARES, as well as for such
areas as topical maps and doctoral dissertations.

About PKP Harvester2

The PKP Harvester2 is an open-source metadata harvester and aggregator that has
been developed by the Public Knowledge Project through its federally funded efforts
to expand and improve access to research. Harvester2 has been designed with
flexibility in mind and supports multiple harvesting protocols and metadata formats
with an emphasis on performance and simplicity of use. In concert with the PKP
software suite, including Open Journal Systems and Open Conference Systems, the
goal of Harvester2 is to promote open access publishing and contribute to the
public good on a global scale.

Version 2.x represents a complete rebuild and rewrite of the PKP Harvester 1.x,
based on the platform pioneered by the Public Knowledge Project with Open
Journal Systems 2.x.

User documentation for Harvester2 can be found on the Internet at
http://pkp.sfu.ca/harvester2/demo/index.php/index/help; a
demonstration site is available at http://pkp.sfu.ca/harvester?2/demo.

Page 3

http://pkp.sfu.ca/demo/present
http://pkp.sfu.ca/ojs/demo/present/index.php/index/help
http://pkp.sfu.ca/

PUBLIC

KNOW 2 SIMON FRASER

Aaay umvsnsm!libl'ary

About This Document

Document Conventions

® Code samples, filenames, URLs, and class names are presented in a courier
typeface;

® Square braces are used in code samples, filenames, URLs, and class names to
indicate a sample value: for example, [anything]Handler.inc.php can be
interpreted as any file name ending in Handler.inc.php

® The URL http://www.mylibrary.com used in many examples is intended as
a fictional illustration only.

Page 4

http://www.mylibrary.com/

PUBLIC 7 SIMON FRASER I ¢
KNOW umvsnsn'vllbl'ary

Technologies

PKP Harvester2 is written in object-oriented PHP (http://www.php.net) using
the Smarty template system for user interface abstraction
(http://smarty.php.net). Data is stored in a SQL database, with database calls
abstracted via the ADODB Database Abstraction library
(http://adodb.sourceforge.net).

Recommended server configurations:

e PHP support (4.2.x or later)
e MySQL (3.23.23 or later)
® Apache (1.3.2x or later) or Apache 2 (2.0.4x or later)
or Microsoft IIS 6 (PHP 5.x required)
e Linux, BSD, Solaris, Mac OS X, Windows operating systems

Other versions or platforms may work but are not supported and may not have

been tested. We welcome feedback from users who have successfully run
Harvester2 on platforms not listed above.

Page 5

http://adodb.sourceforge.net/
http://smarty.php.net/
http://www.php.net/

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Design Overview

Harvester2 is designed to be a flexible tool for fetching, storing, indexing and
searching data from a variety of different types of sources. Several parts of this
process are abstracted using plugins to allow future extensions; for example,
metadata schema are each implemented as a plugin and more can be added by
simply dropping new plugins into the appropriate directory. Likewise, metadata
harvesting protocols, such as the Open Archives Initiative metadata harvesting
protocol, are also implemented as plugins.

The Harvester is designed around the concepts of Archives, Records, Entries, and
Schemas, and Fields.

Each Record describes a single “entity” of some kind, such as a book, recording, or
web page.

Each Archive is a repository of records. An archive may contain a set of records
corresponding to a physical collection, such as a library.

A Schema is a standard for describing an entity, such as Dublin Core, MARC, or
MODS. Each Schema is composed of a set of Fields, such as “Creator” and “Title”,
that can be combined to comprehensively describe a record.

In Harvester2, each Record contains a number of Entries, each in a respective Field,
that describe the entity that the Record corresponds to.

Harvester2 is designed to be a remote database of metadata, using the above
concepts, that periodically communicates with the source from which the data is
obtained. For example, if an organization is managing a journal using Open Journal
Systems, a remote site can index and provide searching facilities to the journal
(and, simultaneously, many other data sources) using Harvester2. Data is
exchanged, for example, using the OAI metadata harvesting protocol; periodically
Harvester2 will refresh the data from the journal source.

Page 6

PUBLIC SIMON FRASER I 3
KNOW umvsnsn'vllbl'ary
Introduction

The design of PKP Harvester2 is heavily structured for maintainability, flexibility
and robustness. For this reason it may seem complex when first approached. Those
familiar with Sun's Enterprise Java Beans technology or the Model-View-Controller
(MVCQ) pattern will note many similarities.

As in a MVC structure, data storage and representation, user interface presentation,
and control are separated into different layers. The major categories, roughly
ordered from “front-end” to “back-end,” follow:

e Smarty templates, which are responsible for assembling HTML pages to
display to users;

e Page classes, which receive requests from users' web browsers, delegate any
required processing to various other classes, and call up the appropriate
Smarty template to generate a response;

® Model classes, which implement PHP objects representing the system's
various entities, such as Archives and Records;

e Data Access Objects (DAOs), which generally provide (amongst others)
update, create, and delete functions for their associated Model classes, are
responsible for all database interaction;

e Support classes, which provide core functionalities, miscellaneous common
classes and functions, etc.

As the system makes use of inheritance and has consistent class naming
conventions, it is generally easy to tell what category a particular class falls into.
For example, a Data Access Object class always inherits from the DAO class, has a
class name of the form [Something]DAO, and has a filename of the form
[Something]DAO. inc.php.

Page 7

\\

Responds

= universirvlibrary

View & Controller

ny

i elthér/or
>
Invokes

I

I

Remote Browser

Requests
Requests

The following diagram illustrates the various components and their interactions.

NOW
LEDGE

| SINRS PUBNT |

Page 8

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Coding Conventions

General

Directories are named using the lowerCamelCase capitalization convention;

Because Harvester2 supports multiple languages, no assumptions should be
made about word orderings. Any language-specific strings should be defined
in the appropriate locale files, making use of variable replacement as
necessary.

User Interface

e Layout should be separated from content using Cascading Style Sheets (CSS);
e Smarty templates should be valid XHTML 1.0 Transitional (see

http://validator.w3.orq/).

PHP Code

Wherever possible, global variables and functions outside of classes should be
avoided;

Symbolic constants, mapped to integers using the PHP define function, are
preferred to numeric or string constants;

Filenames should match class names; for example, the AdminHandler class is
in the file AdminHandler.inc.php;

Class names and variables should be capitalized as follows: Class names use
CamelCase, and instances use lowerCamelCase. For example, instances of a
class MyClass could be called smyClass;

Whenever possible and logical, the variable name should match the class
name: For example, $myClass is preferred to an arbitrary name like $x;

Class names and source code filenames should be descriptive and unique;

Output should be restricted as much as possible to Smarty templates. A valid
situation in which PHP code should output a response is when HTTP headers
are necessary;

To increase performance and decrease server load, import (...) calls should
be kept as localized as possible;

References should be used with care, particularly as they do not behave

Page 9

http://validator.w3.org/

PUBLIC 7 SIMON FRASER I ¢
KNOW umvsnsn'vllbl'ary

consistently across different releases of PHP. For increased performance,
constructors should be generally called by reference, and references should be
used whenever possible when passing objects.

Database

® SQL tables are named in the plural (e.g. archives, records) and table
names are lower case;

® SQL database feature requirements should be kept minimal to promote broad
compatibility. For example, since databases handle date arithmetic
incompatibly; it is performed in the PHP code rather than at the database
level.

e All SQL schema information should be maintained in
dbscripts/xml/harvester2_schema.xml (except plugin schema,
described later).

Security

e The validity of user requests is checked both at the User Interface level and in
the associated Page class. For example, if a user is not allowed to click on a
particular button, it will be disabled in HTML by the Smarty template. If the
user attempts to circumvent this and submits the button click anyway, the
Page class receiving the form or request will ensure that it is ignored.

® Wherever possible, use the Smarty template engine's string escape features to
ensure that HTML exploits and bugs are avoided and special characters are
displayed properly. Only the Site Administrator should be able to input
unchecked HTML, and only in certain fields (such as the multiline fields in
Administration). For example, when displaying an archive title, always use the
following: {$archive->getTitle() |escape}

e Limited HTML support can be provided using the Smarty

strip_unsafe_html modifier, e.g. {$SmyVariable]
strip_unsafe_html}

Page 10

PUBLIC
KNOW
LEDGE

File Structure

[fOBF]

=@7 SIMON FRASER

umvsnsm!libl'ary

The following files are in the root directory of a typical Harvester2 installation:

File/Directory

cache

classes

config.TEMPLATE.inc.php

config.inc.php

Description
Directory containing cached information

Directory containing most of Harvester2's PHP code: Model
classes, Data Access Objects (DAOs), core classes, etc

Sample configuration file

System-wide configuration file

dbscripts

docs

help

Directory containing XML database schemas and data such
as email templates

Directory containing system documentation

Directory containing system help XML documents

includes

Directory containing system bootstrapping PHP code: class
loading, miscellaneous global functions

index.php

1lib

locale
pages
plugins

public

registry

rt

All requests are processed through this PHP script, whose
task it is to invoke the appropriate code elsewhere in the
system

Directory containing client-side javascript files

Directory containing ADODB (database abstraction) and
Smarty (template system) classes

Directory containing locale data and caches
Directory containing Page classes
Directory containing additional plugins

Directory containing files to be made available to remote
browsers

Directory containing various XML data required by the
system: scheduled tasks, available locale names, default
crosswalks, words to avoid when indexing content.

Directory containing XML data used by the Reading Tools

Page 11

PUBLIC SIMON FRASER I =

KNOW KA

KNOW UNIVERSITY N1 brary

File/Directory Description

styles Directory containing CSS stylesheets used by the system

templates Directory containing all Smarty templates

tools Directory containing tools to help maintain the system:
unused locale key finder, scheduled task wrapper, SQL
generator, etc.

Request Handling

The way the system handles a request from a remote browser is somewhat
confusing if the code is examined directly, because of the use of stub files whose
sole purpose is to call on the correct PHP class. For example, although the standard
index.php file appears in many locations, it almost never performs any actual
work on its own.

Instead, work is delegated to the appropriate Page classes, each of which is a
subclass of the Hand1er class and resides in the pages directory of the source tree.

A Note on URLs

Generally, URLs into Harvester2 make use of the PATH_INFO variable. For example,
examine the following (fictional) URL:

http://www.mylibrarv.com/harvester2/index.php/browse/index/all

The PHP script invoked to handle this request, index.php, appears halfway
through the URL. The portion of the URL appearing after this is passed to
index.php via a CGI variable called PATH_INFO.

Some server configurations do not properly handle requests like this, which most
often results in a 404 error when processing this sort of URL. If the server cannot be
re-configured to properly handle these requests, Harvester2 can be configured to
use an alternate method of generating URLs. See the disable_path_info option
in config.inc.php. When this method is used, Harvester2 will generate URLSs
unlike those used as examples in this document. For example, the URL above would

Page 12

http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile

PUBLIC SIMON FRASER |
KNOW & I b
KNOW -, UNIVERsITY110I'A
appear as:

http://www.myvlibraryv.com/harvester2/index.php?

page=browse&op=index&path=all

Request Handling Example

Predictably, delegation of request handling occurs based on the request URL. A

typical URL for browsing an archive is:
http://www.mylibrary.com/harvester2/index.php/browse/index/all

The following paragraphs describe in a basic fashion how the system handles a
request for the above URL. It may be useful to follow the source code at each step
for a more comprehensive understanding of the process.

In this example, http://www.mylibrary.com/harvester2/index.php is the
path to and filename of the root index.php file in the source tree. All requests pass
through this PHP script, whose task is to ensure that the system is properly
configured and to pass control to the appropriate place.

After index.php, there are several more components to the URL. The function of
the first (in this case, browse) is predefined; if others follow, they serve as
parameters to the appropriate handler function.

The first field in this example URL identifies the particular Page class that will be
used to process this request. In this example, the system would handle a request for
the above URL by attempting to load the file pages/browse/index.php; a brief
glance at that file indicates that it simply defines a constant identifying the Page
class name (in this case, BrowseHandler) and loads the PHP file defining that
class.

The last fields, index and a11 in this case, now come into play. The first identifies
the particular function of the Page class that will be called to handle the request. In

the above example, this is the index method of the BrowseHandler class (defined
in the pages/browse/BrowseHandler.inc.php file).

Locating Request Handling Code

Page 13

http://www.mylibrary.com/ojs2/index.php
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php/myjournal/user/profile
http://www.mylibrary.com/ojs2/index.php?journal=myjournal&

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Once the framework responsible for dispatching requests is understood, it is fairly
easy to locate the code responsible for performing a certain task in order to modify
or extend it. The code that delegates control to the appropriate classes has been
written with extensibility in mind; that is, it should rarely need modification.

In order to find the code that handles a specific request, follow these steps:

e Find the name of the Page class in the request URL. This is the first field after
index .php; for example, in the following URL:

http://www.myvlibrarv.com/index.php/browse/index/all

the name of the Page class is BrowseHandler. (Page classes always end with
Handler. Also note the differences in capitalization; in the URL,
lowerCamelCase is used; class names are always CamelCase.)

e Find the source code for this Page class in the pages directory of the source
tree. In the above example, the source code is in
pages/browse/BrowseHandler.inc.php.

® Determine which function is being called by examining the URL. This is the
second field after index.php, or, in this case, index.

e Therefore, the handling code for this request is in the file
pages/user/UserHandler.inc.php, in the function profile.

e Any remaining parts of the URL, in this case “a11”, are passed to this function
as parameters.

Page 14

http://www.mylibrary.com/index.php/myjournal/user/profile

PUBLIC

KNOW 2 SIMON FRASER

Aaay umvsnsm!libl'ary

Database Design

Overview

The major tables involved in storing metadata are represented in the diagram
below; arrows indicate many-to-one foreign keys.

entry_attributes

v

entries ——— P raw_fields

v v

records —— schema_plugins

v

archives

Unless otherwise noted, database tables are managed by PHP classes of the same
name (except in the singular form). For example, the archives table is managed by
the ArchiveDAO class; rows are represented using the Archive class.

The archives table maintains the list of archives known to the system, whether
created by the administrator or submitted by users. In addition to a title,
description, etc., this table associates each archive with a harvester plugin (such as
the OAI harvester plugin).

Metadata is stored in Harvester2 in the entries table, regardless of the metadata
format being used. Each row in the entries table represents a single metadata
“item” — for example, a title or a date. This is the finest level of granularity of the
particular metadata format being represented.

Each entry is associated with a particular row in the raw_fields table, and with a

particular row in the archives table. Additionally, each entry can be further
described or qualified via entries in the entry_attributes table.

Page 15

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

Rows in the entries and entry_attributes tables are managed by the
RecordDAO class.

entries are grouped into records, which are represented by the records table.
Each record represents a single entity which is described by its various entries.
Here, each record is also associated with the schema plugin that is responsible for
its display.

The raw_fields table maintains a list of all fields supported by the various
schemas known to Harvester2, and associates each with the schema plugin it relates
to (as identified in the schema_plugins table).

Note that the entries in the schema_plugins and raw_fields tables are
constructed on demand, largely to provide an efficient identifier for relational
mappings, and should be considered to exist only at the whim of the schema plugin
code.

Miscellaneous Tables

The archive_settings, plugin_settings, and site_settings tables are used
to store a variety of additional pieces of information at the archive, plugin, and site
contexts. The specific usage of these tables is mostly dependent on the set of
plugins being used.

The email_templates and email_templates_data tables store the localized
body text and other information about system email templates.

The search_keyword_list, search_object_keywords, and search_objects
tables provide a full-text index for harvested records.

The versions and sessions tables, respectively, store Harvester2 version
information and login session identification information.

Page 16

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Class Reference

Class Hierarchy

All classes and subclasses of the major Harvester2 objects are listed below.
Indentation indicates inheritance.

CacheManager
CommandLineTool
dbXMLtoSQL
genTestLocale
harvest
rebuildSearchIndex
upgradeTool
Config
ConfigParser
Core
DAO
ArchiveDAO
ArchiveSettingsDAO
CrosswalkDAO
EmailTemplateDAO
FieldDAO
PluginSettingsDAO
RecordDAO
SchemaDAO
SearchDAO
SessionDAO
SiteSettingsDAO
VersionDAO
DAORegistry
DBConnection
DBDataXMLParser
DBResultRange
DataObject
Archive
BaseEmailTemplate
EmailTemplate
Crosswalk
Field
HelpToc
HelpTopic
HelpTopicSection
Mail
MailTemplate
Record
Schema

Page 17

PUBLIC SIMON FRASER | 3
KNOW umvsnsmrllbl‘ary
Site
Version
FileWrapper
FTPFileWrapper
HTTPFileWrapper
HTTPSFileWrapper
Form
ArchiveForm
CrosswalkForm
InstallForm
SiteSettingsForm
UpgradeForm
FormError
FormValidator

FormValidatorArray
FormValidatorCustom
FormValidatorInSet
FormValidatorLength
FormValidatorRegExp
FormValidatorAlphaNum
FormvValidatorEmail
GenericCache
FileCache
MemcacheCache
Handler
AboutHandler
AddHandler
AdminHandler
AdminArchiveHandler
AdminCrosswalkHandler
AdminFunctionsHandler
AdminLanguagesHandler
AdminSettingsHandler
BrowseHandler
HelpHandler
IndexHandler
InstallHandler
LoginHandler
RecordHandler
SearchHandler
Harvester
OATIHarvester
Help
HookRegistry
Installer
Install
Upgrade
ItemIterator
ArrayItemlIterator
DAOResultFactory
DBRowIterator
VirtualArrayIterator

Page 18

PUBLIC SIMON FRASER | 3
KNOW umvsnsm!llbl'ary
Locale
Plugin
HarvesterPlugin
JunkHarvesterPlugin
OAIHarvesterPlugin

PostprocessorPlugin
TestPostprocessorPlugin
PreprocessorPlugin
TestPreprocessorPlugin
SchemaPlugin
DublinCorePlugin
MarcPlugin
ModsPlugin
PluginRegistry
Registry
Request
SMTPMailer
SchemaMap
Search
SearchIndex
SessionManager
String
TemplateManager
Validation
VersionCheck
XMLCustomWriter
XMLDAO
HelpTocDAO
HelpTopicDAO
XMLNode
XMLParser
XMLParserHandler
DublinCoreXMLHandler
MarcXMLHandler
ModsXMLHandler
OAIXMLHandler
SchemaMapHandler
XMLParserDOMHandler

Page 19

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

Page Classes

Introduction

Pages classes receive requests from users' web browsers, delegate any required
processing to various other classes, and call up the appropriate Smarty template to
generate a response (if necessary). All page classes are located in the pages
directory, and each of them must extend the Handler class (see
classes/core/Handler.inc.php).

Additionally, page classes are responsible for ensuring that user requests are valid
and any authentication requirements are met. As much as possible, user-submitted
form parameters and URL parameters should be handled in Page classes and not
elsewhere, unless a Form class is being used to handle parameters.

An easy way to become acquainted with the tasks a Page class must fulfill is to
examine a typical one. The file pages/browse/BrowseHandler.inc.php contains
the code implementing the class BrowseHandler, which handles requests such as
http://www.mylibrary.com/harvester2/browse/index. This is a fairly
typical Page class responsible for allowing the user to choose and browse records in
an archive.

Each Page class implements a number of functions that can be called by the user by
addressing the appropriate Page class and function in the request URL. (See the
section titled “Request Handling” for more information on the mapping between
URLs and page classes.)

Model Classes

The Model classes are PHP classes responsible only for representing database
entities in memory. For example, the archives table stores archive information in
the database; there is a corresponding Model class called archive (see
classes/archive/Archive.inc.php) and DAO class called ArchiveDaO (see
the section called Data Access Objects [DAOs]).

Methods provided by Model classes are largely get/set methods to retrieve and
store information, such as the getTitle () and setTitle ($title) methods of

Page 20

http://www.mylibrary.com/ojs2/myjournal/about/siteMap

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

the aArchive class. Model classes are not responsible for database storage or
updates; this is accomplished by the associated DAO class.

All Model classes extend the DataObject class.

Data Access Objects (DAOSs)

Data Access Objects are used to retrieve data from the database in the form of
Model classes, to update the database given a modified Model class, or to delete
rows from the database.

Each Model class has an associated Data Access Object. For example, the Archive
class (classes/archive/Archive.inc.php) has an associated DAO called
ArchiveDAO (classes/archive/ArchiveDAO.inc.php) that is responsible for
implementing interactions between the Model class and its database entries.

All DAOs extend the DAO class (classes/db/DAO. inc.php). All communication
between PHP and the database back-end is implemented in DAO classes. As much
as is logical and efficient, a given DAO should limit its interaction to the table or
tables with which it is primarily concerned.

DAOs, when used, are never instantiated directly. Instead, they are retrieved by
name using the DAORegistry class, which maintains instances of the system's
DAOs. For example, to retrieve an archive DAO:

SarchiveDao = &DAORegistry::getDAO('ArchiveDAO');
Then, to use it to retrieve an archive with the ID stored in $archiveId:

Sarchive = &SarchiveDao—->getArchive ($archiveld);

Note that many of the DAO methods that fetch a set of results will return subclasses
of the TtemIterator class rather than the usual PHP array. This facilitates paging
of lists containing many items, and can be more efficient than preloading all results
into an array. See the discussion of Paging Classes in the Support Classes section.

Page 21

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

Support Classes

Sending Email Messages

classes/mail/Mail.inc.php
classes/mail/MailTemplate.inc.php
classes/mail/SMTPMailer.inc.php

These classes, along with the EmailTemplate and MailTemplate model classes
and EmailTemplateDAO DAO class, provide all email functionality used in the
system.

Mail.inc.php provides the basic functionality for composing, addressing, and
sending an email message (either via PHP's mail () function or via the custom
SMTPMailer class). It is extended by the class MailTemplate to add support for
template-based messages.

Internationalization

There is a primary XML document for each language of display, located in the
locale directory in a subdirectory named after the locale; for example, the en_Us
locale information is located in the locale/en_US/locale.xml file.

This file contains a number of locale strings used by the User Interface (nearly all
directly from the Smarty templates, although some strings are coded in the Page
classes, for example).

These are invoked by Smarty templates with the {translate key="[keyName]”}
directive (see the section titled User Interface for more information). Variable
replacement is supported.

The system's locales are configured, installed and managed on the Languages page,
available from Site Settings. The available locales list is assembled from the registry
file registry/locales.xml.

In addition to the language-dependent 1ocale.xml file, locale-specific data can be

found in subdirectories of the dbscripts/xml/data/locale and
registry/locale directories, once again named after the locale. For example, the

Page 22

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

XML file dbscripts/xml/data/locale/en_US/email_templates_data.xml
contains all email template text for the en_us (United States English) locale.

All XML data uses UTF-8 encoding and as long as the back-end database is
configured to properly handle special characters, they will be stored and displayed
as entered.

Internationalization functions are provided by classes/i18n/Locale.inc.php.
See also classes/template/TemplateManager.inc.php (part of the User
Interface's support classes) for the implementation of template-based locale
translation functions.

Forms

The Forms class (classes/form/Form. inc.php) and its various subclasses, such
as classes/admin/form/ArchiveForm.inc.php, which is used by a Site
Administrator to modify an Archive, centralize the implementation of common
tasks related to form processing such as validation and error handling.

Subclasses of the Form class override the constructor, initDbata, display,
readInputData, and execute methods to define the specific form being
implemented. The role of each function is described below:

e Class constructor: Initialize any variables specific to this form. This is useful,
for example, if a form is related to a specific Archive; an Archive object or
archive ID can be required as a parameter to the constructor and kept as a
member variable.

® initData: Before the form is displayed, current or default values (if any)
must be loaded into the _data array (a member variable) so the form class
can display them.

® display: Just before a form is displayed, it may be useful to assign additional
parameters to the form's Smarty template in order to display additional
information. This method is overridden in order to perform such assignments.

® readInputData: This method is overridden to instruct the parent class which
form parameters must be used by this form. Additionally, tasks like validation
can be performed here.

® cxecute: This method is called when a form's data is to be “committed.” This

Page 23

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

method is responsible, for example, for updating an existing database record
or inserting a new one(via the appropriate Model and DAO classes).

The best way to gain understanding of the various Form classes is to view a typical
example such as the ArchiveForm class from the example above (implemented in
classes/admin/form/ArchiveForm.inc.php).

It is not convenient or logical for all form interaction between the browser and the
system to be performed using the Form class and its subclasses; generally speaking,
this approach is only useful when a page closely corresponds to a database record.
For example, the page defined by the ArchiveForm class closely corresponds to the
layout of the archives database table.

Configuration

Most of Harvester2's settings are stored in the database in the archive_settings,
site_settings, and plugin_settings tables, and are accessed via the
appropriate DAOs and Model classes. However, certain system-wide settings are
stored in a flat file called config.inc.php (which is not actually a PHP script, but
is so named to ensure that it is not exposed to remote browsers).

This configuration file is parsed by the ConfigParser class
(classes/config/ConfigParser.inc.php) and stored in an instance of the
Config class (classes/config/Config.inc.php).

Core Classes

The Core classes (in the classes/core directory) provide fundamentally
important functions and several of the classes upon which much of the functionality
of Harvester2 is based. They are simple in and of themselves, with flexibility being
provided through their extension.

Core.inc.php: Provides miscellaneous system-wide functions
DataObject.inc.php: All Model classes extend this class
Handler.inc.php: All Page classes extend this class

Registry.inc.php: Provides a system-wide facility for global values, such as

Page 24

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

system startup time, to be stored and retrieved

® Request.inc.php: Provides a wrapper around HTTP requests, and provides
related commonly-used functions

® String.inc.php: Provides locale-independent string-manipulation functions
and related commonly-used functions

In particular, the Request class (defined in classes/core/Request.inc.php)
contains a number of functions to obtain information about the remote user and
build responses. All URLs generated by Harvester2 to link into itself are built using
the Request: :url function; likewise, all redirects into Harvester2 are built using
the Request: :redirect function.

Database Support

The basic database functionality is provided by the ADODB library
(http://adodb.sourceforge.net); atop the ADODB library is an additional
layer of abstraction provided by the Data Access Objects (DAOs). These make use of
a few base classes in the classes/db directory that are extended to provide
specific functionality.

® DAORegistry.inc.php: This implements a central registry of Data Access
Objects; when a DAO is desired, it is fetched through the DAO registry.

® DRConnection.inc.php: All database connections are established via this
class.

® DAO.inc.php: This provides a base class for all DAOs to extend. It provides
functions for accessing the database via the bBConnection class.

In addition, there are several classes that assist with XML parsing and loading into
the database:
® XMLDAO.inc.php: Provides operations for retrieving and modifying objects

from an XML data source
® DBDataXMLParser.inc.php: Parses an XML schema into SQL statements

Security

Harvester2 uses a simple security model. The only authenticated user is the site

Page 25

http://adodb.sourceforge.net/

PUBLIC SIMON FRASER

i u
KNOW umvsnsn'vllbl'ary

administrator, who can choose a username and password. All other users are
unauthenticated and have the same level of access.

The validation class (classes/security/Validation.inc.php) is
responsible for ensuring security in interactions between the client browser and the
web server. It handles login and logout requests, generates password hashes, and
provides many useful shortcut functions for security- and validation-related issues.
The validation class is the preferred means of access for these features.

Session Management

Session management is provided by the session model class, SessionDA0O, and
the sessionManager class (classes/session/SessionManager.inc.php).

While session and SsessionDAO manage database-persistent sessions for
individual users, sessionManager is concerned with the technical specifics of
sessions as implemented for PHP and Apache.

Template Support

Smarty templates (http://smarty.php.net) are accessed and managed via the
TemplateManager class (classes/template/TemplateManager.inc.php),
which performs numerous common tasks such as registering additional Smarty
functions such as {translate ...}, which is used for localization, and setting up
commonly-used template variables such as URLs and date formats.

Paging Classes

Several classes facilitate the paged display of lists of items, such as submissions:
ItemIterator
ArraylItemlIterator
DAOResultFactory
DBRowIterator
VirtualArraylterator

The ItemIterator class is an abstract iterator, for which specific implementations

Page 26

http://smarty.php.net/

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

are provided by the other classes. All DAO classes returning subclasses of
ItemIterator should be treated as though they were returning TtemIterators.

Each iterator represents a single “page” of results. For example, when fetching a list
of records from Recordbao, a range of desired row numbers can be supplied; the
ItemIterator returned (specifically an ArrayIterator) contains information
about that range.

ArrayltemIterator and VirtualArrayIterator provide support for iterating
through PHP arrays; in the case of virtualArrayIterator, only the desired
page's entries need be supplied, while ArrayTtemIterator will take the entire set
of results as a parameter and iterate through only those entries on the current page.

DAOResultFactory, the most commonly used and preferred TtemIterator
subclass, takes care of instantiating Model objects corresponding to the results

using a supplied DAO and instantiation method.

DBRowIterator is an ItemIterator wrapper around the ADODB result structure.

Plugins

There are several classes included with Harvester2 distribution to help support a
plugin registry. For information on the plugin registry, see the section titled
“Plugins”.

Page 27

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Common Tasks

The following sections contain code samples and further description of how the
various classes interact.

Sending Emails

Emails templates for each locale are stored in an XML file called
dbscripts/xml/data/locale/[localeName] /email_templates_data.xml.
Each email has an identifier (called email_key in the XML file) such as
NEW_ARCHIVE_NOTIFY. This identifier is used in the PHP code to retrieve a
particular email template, including body text and subject.

The following code retrieves and sends the NEW_ARCHIVE_NOTIFY email, which is
sent to non-Administrator submitters as an acknowledgment when they enter a new
archive. (This snippet assumes that $archiveId is set to the new archive's ID.)

// Load the required MailTemplate class
import('mail.MailTemplate');

// Retrieve the mail template by name.
Smail = &new MailTemplate ('NEW_ARCHIVE_NOTIFY');

if

(Smail->isEnabled()) {

// Get the site object and assign the contact person as the recipient
$site =& Request::getSite();

Smail->addRecipient ($site->getContactEmail (), $site->getContactName());

// This template contains variable names of the form {$variableName} that need to
// be replaced with the appropriate values. Note that while the syntax is similar
// to that used by Smarty templates, email templates are not Smarty templates. Only
// direct variable replacement is supported.

Smail->assignParams (array (

'archiveTitle' => 'This is the title of the archive',
'siteTitle' => $site->getTitle(),
'loginUrl' => Request::url('admin', 'manage',6 $archiveld)

)) i

Smail->send() ;

Database Interaction with DAOs

The following code snippet retrieves an archive object using the archive ID supplied
in the $archiveId variable, changes the title, and updates the database with the

Page 28

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

new values.

// Fetch the archive object using the archive DAO.
SarchiveDao = &DAORegistry::getDAO('ArchiveDAO"') ;
Sarchive = &S$archiveDao->getArchive ($archiveld);

Sarchive->setTitle('This is the new archive title.');

// Update the database with the modified information.
SarchiveDao->updateArchive ($Sarchive) ;

Similarly, the following snippet deletes an archive from the database.

// Fetch the archive object using the archive DAO.
SarchiveDao = &DAORegistry::getDAO('ArchiveDAO"') ;
Sarchive = &S$archiveDao->getArchive ($archiveld);

// Delete the archive from the database.
SarchiveDao->deleteArchive (Sarchive) ;

The previous task could be accomplished much more efficiently with the following:

// Delete the archive using the archive DAO.
SarchiveDao = &DAORegistry::getDAO('ArchiveDAQ') ;
SarchiveDao->deleteArchiveById ($SarchivelId) ;

Generally speaking, the DAOs are responsible for deleting dependent database
entries. For example, deleting an archive should delete that archive's records and
entries from the database. Note that this is accomplished in PHP code rather than
using database triggers or other database-level integrity functionality in order to
keep database requirements as low as possible.

Page 29

PUBLIC

KNOW ‘=7 SIMON FRASER

Aaay umvsnsm!libl'ary

User Interface

The User Interface is implemented as a large set of Smarty templates, which are
called from the various Page classes. (See the section titled “Request Handling”.)

These templates are responsible for the HTML markup of each page; however, all
content is provided either by template variables (such as archive titles) or through
locale-specific translations using a custom Smarty function.

You should be familiar with Smarty templates before working with Harvester2
templates. Smarty documentation is available from http://smarty.php.net.

Variables

Template variables are generally assigned in the Page or Form class that calls the
template. In addition, however, many variables are assigned by the
TemplateManager class and are available to all templates:

® defaultCharset: the value of the “client_charset” setting from the

[i18n] section of the config.inc.php configuration file

currentLocale: The symbolic name of the current locale

baseUr1: Base URL of the site, e.g. http: //www.mylibrary.com

requestedPage: The symbolic name of the requested page

pageTitle: Default name of locale key of page title; this should be replaced

with a more appropriate setting in the template

siteTitle: Site title from Site Configuration

pagePath: Path of the requested page and operation, if applicable, prepended

with a slash; e.g. /browse/index

® currentUrl: The full URL of the current page

® dateFormatTrunc: The value of the date_format_trunc parameter in the
[general] section of the config.inc.php configuration file; used with the
date_format Smarty function

® dateFormatShort: The value of the date_format_short parameter in the
[general] section of the config.inc.php configuration file; used with the
date_format Smarty function

® dateFormatLong: The value of the date_format_long parameter in the
[general] section of the config.inc.php configuration file; used with the

Page 30

http://www.mylibrary.com/
http://smarty.php.net/

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

date_format Smarty function

® datetimeFormatShort: The value of the datetime_format_short
parameter in the [general] section of the config.inc.php configuration
file; used with the date_format Smarty function

® datetimeFormatLong: The value of the datetime_format_long parameter
in the [general] section of the config.inc.php configuration file; used
with the date_format Smarty function

® currentLocale: The name of the currently applicable locale; e.g. en_Us

® usersSession: The current Session object

® isUserLoggedIn: Boolean indicating whether or not the user is logged in

® loggedInUsername: The current user's username, if applicable

® page_links: The maximum number of page links to be displayed for a paged
list.

® items_per_page: The maximum number of items to display per page of a
paged list.

If multiple languages are enabled, the following variables are set:
® cnablelanguageToggle: Set to true when this feature is enabled
® languageToggleLocales: Array of selectable locales

Functions & Modifiers

A number of functions have been added to Smarty's built-in template functions to
assist in common tasks such as localization.

® translate (€.8. {translate key="my.locale.key” myvar-"value”}): This function
provides a locale-specific translation. (See the section called Localization.)
Variable replacement is possible using Smarty-style syntax; using the above
example, if the 1ocale.xml file contains:

<message key="my.locale.key”>myVar equals “{$myVar}”.</message>

The resulting output will be:

myVar equals “value”.
(Note that only direct variable replacements are allowed in locale files. You
cannot call methods on objects or Smarty functions.)
® assign (€.8. (translatelassign:”myvar” key="my.locale.key”}): ASSign a value to a
template variable. This example is similar to {translate ...}, except that
the result is assigned to the specified Smarty variable rather than being
displayed to the browser.

Page 31

PUBLIC 125 SIMON FRASER || 3
KNOW umvsnsn'vllbl'ary

® html_ options_translate (eg {html_options_translate values=$myValuesArray

selected=$selectedoption}): Convert an array of the form
array('optionvall' => 'locale.key.optionl', 'optionVal2' => 'locale.key.option2')

to a set of HTML <option>...</option> tags of the form

<option value="optionVall”>Translation of “locale.key.optionl” here</option>
<option value="optionVal2”>Translation of “locale.key.option2” here</option>

for use in a Select menu.

® get_help_id (eg {get_help_id key="myHelpTopic” urlz”true”})Z Displays the
topic ID or a full URL (depending on the value of the ur1 parameter) to the
specific help page named.

® icon (€.g. {icon name="mail” alt="...” url="http://link.url.com” disabled="true”}):
Displays an icon with the specified link URL, disabled or enabled as specified.
The name paramter can take on the values comment, delete, edit, letter,
mail, Or view.

® help_topic (€.8. (help_topic key="(dir)*.page.topic" text="foo"}): Displays a
link to the specified help topic, with the text parameter defining the link
contents.

® page_1 inks: (eg {page_links iterator:$submissions)): Displays the page linkS
for the paged list associated with the TtemIterator subclass (in this
example, $submissions).

[] jpagge_jjlfo: (e.g.{$page_info name="submissions" iterator:$submissions}):
Displays the page information (e.g. page number and total page count) for the
paged list associated with the TtemIterator subclass (in this case,
$submissions).

® iterate: (e.g. (siterate from-submissions item—submission}): Iterate through
items in the specified TtemIterator subclass, with each item stored as a
smarty variable with the supplied name. (This example iterates through items
in the $submissions iterator, which each item stored as a template variable
named $submission.) Note that there are no dollar-signs preceding the
variable names -- the specified parameters are variable names, not variables
themselves.

® strip_unsafe_html: (€.g. (smyvar|strip_unsafe_ntm1}): Remove HTML tags
and attributes deemed as “unsafe” for general use. This modifier allows
certain simple HTML tags to be passed through to the remote browser, but
cleans anything advanced that may be used for XSS-based attacks.

® call _hook: (€.g. {call_hook name="Templates::Hook::Name::nere”}) Call a plugin
hook by name. Any plugins registered against the named hook will be called.

There are many examples of use of each of these functions in the templates
provided with Harvester2.

Page 32

http://link.url.com/

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary
Plugins

The PKP Harvester2 contains a full-fledged plugin infrastructure that provides
developers with several mechanisms to extend and modify the system's behavior
without modifying the codebase. The key concepts involved in this infrastructure
are categories, plugins, and hooks.

A plugin is a self-contained collection of code and resources that implements an
extension of or modification to Harvester2. When placed in the appropriate
directory within the codebase, it is loaded and called automatically depending on
the category it is part of.

Each plugin belongs to a single category, which defines its behavior. For example,
plugins in the schemas category (which implement functions specific to a particular
metadata schema) are loaded whenever a schema-specific function is used (such as
when a record is viewed). These plugins must implement certain methods which
are used for delegation of control between the plugin and Harvester2.

Hooks are used by plugins as a notification tool and to override behaviors built into
Harvester2. At many points in the execution of Harvester2 code, a hook will be
called by name - for example, LoadHandler in index.php. Any plugins that have
been loaded and registered against that hook will have a chance to execute code to
alter the default behavior of Harvester2 around the point at which that hook was
called.

While most of the plugin categories built into Harvester2 relate to specific aspects of
the system, such as harvester protocols and schemas, there is a generic category
for plugins that do not suit any of the other categories. These are more complicated
to write but offer much more flexibility in the types of alterations they can make to
Harvester2. Most hooks are generally intended for use with plugins in this category
(although any plugin category can register against any hook, with the only
limitation being that the category must be loaded in order to be effective).

Page 33

PUBLIC

UBLIC SIMON FRASER I =
KNOW umvsnsn'vllbl'ary

Objects & Classes

Plugins in Harvester2 are object-oriented. Each plugin extends a class defining its
category's functions and is responsible for implementing them.

Category Base Class
generic GenericPlugin (classes/plugins/GenericPlugin.inc.php)
harvesters HarvesterPlugin (classes/plugins/HarvesterPlugin.inc.php)
preprocessors PreprocessorPlugin (classes/plugins/PreprocessorPlugin.inc.php)
postprocessors PostprocessorPlugin (classes/plugins/PostprocessorPlugin.inc.php)
schemas SchemaPlugin (classes/plugins/SchemaPlugin.inc.php)

Each base class contains a description of the functions that must be implemented by
plugins in that category.

Plugins are managed by the P1uginRegistry class (implemented in
classes/plugins/PluginRegistry.inc.php). They can register hooks by using
the HookRegistry class (implemented in
classes/plugins/HookRegistry.inc.php).

Registration Function

Whenever Harvester2 loads and registers a plugin, the plugin's register(...)
function will be called. This is an opportunity for the plugin to register against any
hooks it needs, load configuration, initialize data structures, etc.

Another common task to perform in the registration function is loading locale data.
Locale data should be included in subdirectories of the plugin's directory called
locale/[localeName]/locale.xml, where [localeName] is the standard
symbolic name of the locale, such as en_us for US English. In order for these data
files to be loaded, plugins should call $this->addLocalebata () ; inthe
registration function after calling the parent registration function.

Page 34

PUBLIC

KNOW =7 SIMON FRASER

Aaay umvsnsm!libl'ary

Hook Registration and Callback

As described above, plugins will usually register against hooks in the plugin's
register (...) function. When registering against a hook, the plugin must specify
a callback function; when a hook call is encountered the hook registry will call, in
the order in which they were registered, all callbacks registered against the hook.
This process can be interrupted by any particular callback by returning a true from
the callback function.

The process by which a plugin registers against a hook is as follows:
HookRegistry: :register (
'Templates: :Hook: :Name: :Here',
array (&$this, 'callback')

)i
In the example above, the parameters to HookRegistry: :register are:
1. The name of the hook. See the complete list of hooks below.

2. The callback function to which control should be passed when the hook is
encountered. This is the same callback format used by PHP's
call_user_func function; see the documentation at http://php.net for
more information. It is important that sthis be included in the array by
reference, or you may encounter problems with multiple instances of the
plugin object.

The definition of the callback function (named and located in the above registration
call) is:
function callback ($hookName, $args) {
Sparams =& S$args([0];
$Ssmarty =& S$Sargs([1l];

Soutput =& S$args([2];

)
The parameter list for the callback function is always the same:

1. The name of the hook that resulted in the callback receiving control (which
can be useful when several hook registrations are made with the same

Page 35

http://php.net/

PUBLIC SIMON FRASER

i u
KNOW umvsnsn'vllbl'ary

callback function), and

2. An array of additional parameters passed to the callback. The contents of
this array depend on the hook being registered against. Since this is a
template hook, the callback can expect the three parameters named above.

The array-based passing of parameters is slightly cumbersome, but it allows hook
calls to compatibly pass references to parameters if desired. Otherwise, for example,
the above code would receive a duplicated Smarty object rather than the actual
Smarty object and any changes to attributes of the $smarty object would disappear
upon returning.

Finally, the return value from a hook callback is very important. If a hook callback
returns true, the hook registry considers this callback to have definitively
“handled” the hook and will not call further registered callbacks on the same hook.
If the callback returns false, other callbacks registered on the same hook after the
current one will have a chance to handle the hook call.

If another plugin (or even the same plugin) was registered again against the same
hook, and the first registrant returned true from the hook callback, second callback
would not be called.

Plugin Management

In the plugin class, there are three functions that provide metadata about the
plugin: getName (), getDisplayName (), and getDescription (). These are part
of a plugin management interface that is available to the Administrator.

The result of the getName () call is used to refer to the plugin symbolically and
need not be human-readable; however, the getDisplayName () and
getDescription () functions should return localized values. This was not done in
the above example for brevity.

Page 36

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

The management interface allows plugins to specify various management functions
the Administrator can perform on the plugin using the getManagementverbs ()
and manage ($verb, $args)funcﬁons.getManagementVerbs()ShoukirGUHn
an array of two-element arrays as follows:

Sverbs = parent::getManagementVerbs () ;
Sverbs[] = array('funcl', Locale::translate('my.localization.key.for.funcl'));

Sverbs[] = array('func2', Locale::translate('my.localization.key.for.func2'));

Note that the parent call should be respected as above, as some plugin categories
provide management verbs automatically.

Using the above sample code, the plugin should be ready to receive the
management verbs func1 and func?2 as follows (once again respecting any
management verbs provided by the parent class):
function manage ($verb, $args) {
if (!parent::manage ($Sverb, S$args)) switch (Sverb) ({
case 'funcl':
// Handle funcl here.
break;
case 'func2':
// Handle func2 here.
break;
default:
return false;
)

return true;

Additional Plugin Functionality

There are several additional plugin functionalities that may prove useful:

e Plugin Settings: Plugins can store and retrieve settings with a mechanism
similar to Archive Settings. Use the Plugin class's get Setting and

Page 37

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

updateSetting functions.
e Templates: Any plugin can keep templates in its plugin directory and display
them by calling:

$templateMgr->display ($this->getTemplatePath() . 'templateName.tpl');
See the native import/export plugin for an example.

e Schema Management: By overriding get InstallSchemaFile () and
placing the named schema file in the plugin directory, generic plugins can
make use of Harvester2's schema-management features. This function is called
on Harvester2 install or upgrade.

e Data Management: By overriding get InstallbataFile () and placing the
named data file in the plugin directory, generic plugins can make use of
Harvester2's data installation feature. This function is called on Harvester2
install or upgrade.

e Helper Code: Helper code in the plugin's directory can be imported using
Sthis->import ('HelperCode'); // imports HelperCode.inc.php

Hook List

The following list describes all the hooks built into Harvester2 as of release 2.0.
Ampersands before variable names (e.g. ¢ $sourceFile) indicate that the
parameter has been passed to the hook callback in the parameters array by
reference and can be modified by the hook callback. The effect of the hook
callback's return value is specified where applicable; in addition to this, the hook
callback return value will always determine whether or not further callbacks
registered on the same hook will be skipped.

Name Parameters Description

LoadHandler &Spage, &Sop,
&$sourceFile

Called by Harvester2's main index.php script
after the page (& $page), operation (&$op), and
handler code file (& $sourceFile) names have
been determined, but before $sourceFile is
loaded. Can be used to intercept browser
requests for handling by the plugin. Returning
true from the callback will prevent Harvester2
from loading the handler stub in $sourceFile.

ArchiveForm: :Archive &$archiveForm Called at the end Of the ArChive formvs

Page 38

PUBLIC
KNOW
LEDGE

Name

Form

ArchiveForm: :display

ArchiveForm: :initDat

a

ArchiveForm:
meterNames

:getPara

archiveForm: :execute

CrosswalkForm: :Cross
walkForm

CrosswalkForm: :execu
te

ArchiveDAO: :_returnA
rchiveFromRow

[something]DAO: :Cons
tructor

Parameters

’
SharvesterPlu
ginName

&$SarchiveForm

’
&StemplateMgr
’
SharvesterPlu
ginName

&$SarchiveForm
, &S$Sarchive,
SharvesterPlu
ginName

&$SarchiveForm

’
&S$parameterNa
mes,
&$harvesterPl
uginName

&$SarchiveForm
, &S$Sarchive,
SharvesterPlu
ginName

&$ScrosswalkFo
rm

&$crosswalkFo
rm,
&Scrosswalk

&Sarchive,
&Srow

&Sdao,
&$dataSource

ez library

Description

constructor; the archive form object and current
harvester plugin name are passed in as
parameters.

Called just before the Archive form is displayed.
The archive form object, template manager
(extended Smarty object), and harvester plugin
name are passed as parameters.

Called after the archive form's data is initialized
for the given archive with the given harvester
plugin name, but before the form is overridden
with any posted values the user may have
already supplied.

Called before the archive form returns a list of
parameter names. This hook can be used to
extend the list of parameters included on the
archive form.

Called after the archive form has updated or
created the current archive in response to a
user's submission of the form but before, if
applicable, Harvester2 sends an email to the
administrator notifying them of a new archive
submission.

Called at the end of the Crosswalk form's
constructor.

Called after the crosswalk form has updated a
crosswalk in response to an administrator
request.

Called after an Archive object is created from the
given database row, before it is returned to the
caller.

Called when a DAO is constructed with the given
data source. To prevent the default constructor
behavior from occurring, the hook registrant
should return true from its callback function.

Page 39

PUBLIC
KNOW
LEDGE

Name

[Anything]DAO: : [Any
function calling

DAO: :retrieve]

[Anything]DAO: : [Any
function calling
DAO: :retrieveCached]

[Anything]DAO: : [Any
function calling
DAO: :retrieveLimit]

[Anything]DAO: : [Any
function calling
DAO: :retrieveRange]

Parameters

&$sqgl,
&Sparams,
&Svalue

&$sqal,
&S$params,
&$secsToCache
, &Svalue

&$sqal,
&S$params,
&SnumRows,
&Soffset,
&Svalue

&$sql,
&S$params,
&$dbResultRan
ge, &Svalue

SIMON FRASER I =
umvsnsn'vllbl'ary

Description

This hook should only be used with PHP > =
4.3.0.

Any DAO function calling DAO: : retrieve will
cause a hook to be triggered. The SQL statement
in &£$sql can be modified, as can the ADODB
parameters in s $params. If the hook callback is
intended to replace the function of this call
entirely, s $value should receive the retrieve
call's intended result and the hook should return
true. This hook should only be used with PHP
>=4.3.0.

Any DAO function calling

DAO: :retrieveCached will cause a hook to be
triggered. The SQL statement in s $sql can be
modified, as can the ADODB parameters in
&$params and the seconds-to-cache value in
&$secsToCache. If the hook callback is
intended to replace the function of this call
entirely, s $value should receive the retrieve
call's intended result and the hook should return
true. This hook should only be used with PHP
>=4.3.0.

Any DAO function calling

DAO: :retrieveCached will cause a hook to be
triggered. The SQL statement in s$sql can be
modified, as can the ADODB parameters in
&$params, and the fetch seek and limit specified
in &Soffset and &$numRows. If the hook
callback is intended to replace the function of
this call entirely, & $value should receive the
retrieve call's intended result and the hook
should return true. This hook should only be
used with PHP > = 4.3.0.

Any DAO function calling
DAO: :retrieveRange Will cause a hook to be
triggered. The SQL statement in s$sql can be

Page 40

PUBLIC
KNOW
LEDGE

Name

Parameters

SIMON FRASER I =
umvsnsn'vllbl'ary

Description

modified, as can the ADODB parameters in
&$params and the range information in
&$dbResultRange. If the hook callback is
intended to replace the function of this call
entirely, s $value should receive the retrieve
call's intended result and the hook should return
true. This hook should only be used with PHP
>=4.3.0.

[Anything]DAO: : [Any
function calling
DAO: :update]

Locale: :_cacheMiss

Installer::Installer

Installer::prelnstal
1

&$sqal,
&S$params,
&Svalue

&$id,
&Slocale,
&Svalue

&$installer,
&$descriptor,
&Sparams

&S$installer,
&Sresult

Any DAO function calling DAO: :update will
cause a hook to be triggered. The SQL statement
in &$sql can be modified, as can the ADODB
parameters in & $params. If the hook callback is
intended to replace the function of this call
entirely, ¢« $value should receive the retrieve
call's intended result and the hook should return
true. This hook should only be used with PHP
>=4.3.0.

Called when a locale key cannot be found in the
current locale cache. This can be used to extend
the default set of locale data with additional
keys. To override the default behavior, the hook
registrant should specify a return value in
&$value and return true from the callback
function.

Called in the constructor of the Installer class. To
prevent the default behavior of the Installer's
constructor, the callback registrant should return
true from its callback function.

Called during the Installer's pre-installation
phase. The hook registrant has the opportunity
to alter the return value (s$result)of the
preInstall function.

Installer::postInsta
11

&$installer,
&Sresult

Called during the Installer's post-installation
phase. The hook registrant has the opportunity
to alter the return value (s&$result)of the

Page 41

PUBLIC SIMON FRASER I 3

KNOW % lib ry

KNOW universitYl10lA

Name Parameters Description
postInstall function.

[nstaller::parselnst &oinstaller, Called after the Installer parses the installation

aller &$result . . .
script. The hook registrant has the opportunity
to alter the return value (s$result) of the
parseInstaller function.

Installer::executeln &oinstaller, Called after the Installer executes the

staller &$result) . ; -
installation script. The hook registrant has the
opportunity to alter the return value
(sSresult) of the executeInstaller
function.

[psratieriiupdatever diinstaiiers Called after the Installer updates the version of
the installation. The hook registrant has the
opportunity to alter the return value
(sSresult) of the updateversion function.

SchemaPlugin::indexk &sarchive, Called before a schema plugin updates the

ecord &$record,) .

&gfield, indexing of an entry. To prevent the schema
lue,
coarteibutes plugin from indexing the entry (i.e. if the hook
registrant indexes it itself), the hook registrant
should return true from the callback function.

VversionDAO: :_returnV | &sversion, Called after a Version object is created from the

ersionFromRow &Srow X L.
given database row, before it is returned to the
caller.

femplateManager::dis &stemplateMar Called before the given template manager

play , &Stemplate, - : :

sssendcontent (extended Smarty object) displays the given

T ’ .

cbonarset template. To prevent the template from being
displayed, the hook registrant should return
true from the callback function.

Request::redirect &surl Called before Request : :redirect performs a
redirect to & Surl. Returning true will prevent
Harvester2 from performing the redirect after
the hook is finished. Can be used to intercept
and rewrite redirects.

Request: :getBaseUrl | &S$baseUrl

Called the first time Request : : getBaseUrl is
called after the base URL has been determined

Page 42

PUBLIC
KNOW
LEDGE

Name

Request:

Request:

Request:

Url

Request:

rl

Request:

ing

Request:

ath

:getBasePath

:getIndexUrl

:getComplete

:getRequestU

:getQueryStr

:getRequestP

Parameters

&SbasePath

&$indexUrl

&$completeUrl

&SrequestUrl

&SqueryString

&$requestPath

SIMON FRASER I =
umvsnsn'vllbl'ary

Description

but before returning it to the caller. This value is
used for all subsequent calls.

Called the first time Request : : getBasePath is
called after the base path has been determined
but before returning it to the caller. This value is
used for all subsequent calls.

Called the first time Request : : get IndexUrl is
called after the index URL has been determined
but before returning it to the caller. This value is
used for all subsequent calls.

Called the first time

Request: :getCompleteUrl is called after the
complete URL has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time Request : : getRequestUrl
is called after the request URL has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Called the first time

Request : :getQueryString is called after the
query string has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time

Request: :getRequestPath is called after the
request path has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Request:

st

Request:

:getServerHo

:getProtocol

&$serverHost

&S$protocol

Called the first time Request : : get ServerHost
is called after the server host has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Called the first time Request : :getProtocol is

Page 43

PUBLIC
KNOW
LEDGE

Name

Request::getRemoteAd
dr

Parameters

&SremoteAddr

SIMON FRASER

umvsnsm!libl'ary

Description

called after the protocol (http or https) has
been determined but before returning it to the
caller. This value is used for all subsequent calls.

Called the first time Request : : getRemoteAddr
is called after the remote address has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Request::getRemoteDo
main

Request::getUserAgen
t

Request::getRequeste
dJournalPath

FieldDAO: :_returnFie
1dFromRow

CrosswalkDAO: :_retur
nCrosswalkFromRow

RecordDAO: :_returnRe
cordFromRow

SchemaDAO: :_returnSc
hemaFromRow

Harvester::insertEnt
ry

&SremoteDomai
n

&$userAgent

&$journal

&$field,
&Srow

&$field,
&Srow

&Srecord,
&Srow

&S$schema,
&$row

&Sarchive,
&Srecord,

Called the first time

Request : :getRemoteDomain is called after the
remote domain has been determined but before
returning it to the caller. This value is used for
all subsequent calls.

Called the first time Request: :getUserAgent
is called after the user agent has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Called the first time

Request : :getRequestedJournalPath is
called after the requested journal path has been
determined but before returning it to the caller.
This value is used for all subsequent calls.

Called after a Field object is created from the
given database row, before it is returned to the
caller.

Called after a Crosswalk object is created from
the given database row, before it is returned to
the caller.

Called after a Record object is created from the
given database row, before it is returned to the
caller.

Called after a Schema object is created from the
given database row, before it is returned to the
caller.

Called before Harvester2 inserts an entry in the

Page 44

PUBLIC SIMON FRASER I 3
KNOW % lib ry
KNOW UNIvERsITYIIDIFA
Name Parameters Description
rield given field of the given record of the given
alue'
ssattributes archive with the given attributes. To prevent the
default behavior from occurring, the hook
registrant should return true from its callback
function.
Matl:zsend et Called before Harvester2 sends the email
plients, R K
&$subject, message with the given parameters. To prevent
&$mailBody,
sSheaders, this from occurring (i.e. if the hook callback
¢sadditionalP takes care of sending the message itself), it
arameters . .
should return true from its callback function.
EmailTemplateDAO::_r &SemailTempla

eturnEmailTemplateFr
omRow

te, &Srow

Called after an email template object is created
from the given database row, before it is
returned to the caller.

RIDRO. i—returnversio | &sversion, Called after RTDAO builds a Reading Tools
Version (&$version) object from the database
row (&Srow), but before the Reading Tools
version object is passed back to the calling
function.

RTDRO: :_returnSearch | &fsearch, Called after RTDAO builds a Reading Tools

romRow &Srow)
Search (&$search) object from the database
row (&S$row), but before the Reading Tools
search object is passed back to the calling
function.

RIDRO. i—returnContex | &scontext, Called after RTDAO builds a Reading Tools
Context (&Scontext) object from the database
row (&Srow), but before the Reading Tools
context object is passed back to the calling
function.

femplate: :Admin::Arc) &fparans, Called after the built-in parts of the archive form

ives::displayHarves &$smarty, X ;

terForm &$output have been displayed; this hook can be used to
extend the form with additional fields.

Sparams ['plugin'] contains the name of the
harvester plugin.

Template: :Admin: :Ind &$params,

ox:BitoManagenent | sSomasty., Called at the end of the. items list in the Site

&$output Management bulleted list.

Page 45

PUBLIC
KNOW
LEDGE

Name

Template: :Admin: :Ind
ex::AdminFunctions

Template: :Browse: :Ar
chivelInfo::DisplayEx
tendedArchiveInfo

Parameters

&Sparams,
&$smarty,
&Soutput

&Sparams,
&S$smarty,
&Soutput

[fOBF]

25 SIMON FRASER | 3
umvsnsn'vllbl'ary

Description

Called at the end of the items list in the Admin
Functions bulleted list.

Called after the built-in parts of the archive
information template have been displayed; this
hook can be used to add information to this
page. $params ['archive'] contains the
archive object in question.

Page 46

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Translating Harvester2

To add support for other languages, XML files in the following directories must be
translated and placed in an appropriately named directory (using ISO locale codes,
e.g. fr_FR, is recommended):

® locale/en_Us: This directory contains the main locale file with the majority
of localized Harvester2 text.

® dbscripts/xml/data/locale/en_uUs: This directory contains localized
database data, such as email templates.

® help/en_us: This directory contains the help files for Harvester2.

rt/en_us: This directory contains the Reading Tools.

® plugins/[plugin category]/[plugin name]/locale, Where applicable:
These directories contain plugin-specific locale strings.

The only critical files that need translation for the system to function properly are
found in locale/en_US, dbscripts/xml/data/locale/en_US, and
registry/locale/en_US.

New locales must also be added to the file registry/locales.xml, after which
they can be installed in the system through the site administration web interface.

Translations can be contributed back to PKP for distribution with future releases of
Harvester2.

Page 47

PUBLIC SIMON FRASER | 3
KNOW umvsnsn'vllbl'ary

Obtaining More Information

For more information, see the PKP web site at http: //pkp.sfu.ca. Thereis a
Harvester2 support forum available at http://pkp.sfu.ca/support/forum; this
is the preferred method of contacting the Harvester2 team. Please be sure to search
the forum archives to see if your question has already been answered.

If you have a bug to report, see the bug tracking system at
http://pkp.sfu.ca/bugzilla.

The team can be reached by email at pkp-support@sfu.ca.

Page 48

mailto:pkp-support@sfu.ca
http://pkp.sfu.ca/bugzilla
http://pkp.sfu.ca/support/forum
http://pkp.sfu.ca/

	Introduction
	About the Public Knowledge Project
	About PKP Harvester2
	About This Document
	Document Conventions

	Technologies
	Design Overview
	Introduction
	Coding Conventions
	General
	User Interface
	PHP Code
	Database
	Security

	File Structure
	Request Handling
	A Note on URLs
	Request Handling Example
	Locating Request Handling Code

	Database Design
	Overview
	Miscellaneous Tables

	Class Reference
	Class Hierarchy
	Page Classes
	Introduction

	Model Classes
	Data Access Objects (DAOs)
	Support Classes
	Sending Email Messages
	Internationalization
	Forms
	Configuration
	Core Classes
	Database Support
	Security
	Session Management
	Template Support
	Paging Classes
	Plugins

	Common Tasks
	Sending Emails
	Database Interaction with DAOs

	User Interface
	Variables
	Functions & Modifiers

	Plugins
	Objects & Classes
	Registration Function
	Hook Registration and Callback
	Plugin Management
	Additional Plugin Functionality
	Hook List

	Translating Harvester2
	Obtaining More Information

